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On learning stochastic models: from theory to practice

Raphaël Reynouard

November 14, 2023

Abstract

The field of model checking offers numerous tools for analysing stochastic models.
This analysis provides a comprehensive understanding of the behaviours exhib-
ited by the system represented in the model. Consequently, such analyses are
of paramount importance for critical systems. Nonetheless, in certain applica-
tion domains, the model is not readily accessible and needs to be acquired from
partially-observable executions of the system under analysis.

This thesis proposes to improve the learning of stochastic models, thereby facili-
tating the application of model checking to systems for which no model is currently
available. This objective is realised via three discrete strategies: (i) formulating an
active learning algorithm to learn Markov decision processes, (ii) devising a learn-
ing algorithm tailored for synchronised compositions of continuous-time Markov
chains, and (iii) developing a library compatible with model checkers, streamlining
the process of stochastic model acquisition and its seamless incorporation into the
model checking procedure. The first two strategies focus on enhancing and ex-
tending the theoretical foundations of learning stochastic models, while the third
one centers on facilitating the application of learning stochastic models and their
integration into the model checking workflow.
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Setningarfræðilegar aðferðir við neikvæðar niðurstöður í
algebrum vinnslu og mótalógík

Raphaël Reynouard

November 14, 2023

Útdráttur

Fagsviðið sem fjallar um könnun líkana býður upp á margs konar tól til að kanna
líkindafræðileg líkön. Slíkar kannanir skapa gagnlegt innsæi í hegðun þess kerfis
sem líkanið lýsir. Slíkar greiningar eru sérlega mikilvægar fyrir krítísk kerfi. Þrátt
fyrir þetta er í mörgum tilfellum ekki auðvelt að fá aðgang að slíkum líkönum og
því þörf á að geta skapað þau frá grunni með því að keyra kerfin og safna þeim
upplýsingum sem eru aðgengilegar.

Þessi ritgerð býður upp á leiðir til að læra líkindafræðileg líkön og á þann hátt
gera það mögulegt að nota þessa aðferðafræði í tilfellum þar sem engin líkön hafa
verið til fram að þessu. Þetta felur í sér eftirfarandi þrjár nálganir: (i) Að setja fram
virkt reiknirit til að læra Markov ákvörðunarferli (ii) Að setja fram lærdómsreiknirit
fyrir samstillta samsetningu á Markov-keðjum með samfelldan tíma, og (iii) að þróa
hugbúnaðarkerfi sem er samhæft helstu kerfum sem sjá um könnun líkana og gera
þannig allt ferlið meira straumlínulagað.

Fyrstu tvær aðferðirnar miða fyrst og fremst að því að efla fræðilegan bak-
grunn fyrir lærdómsreiknirit sem læra líkindafræðileg líkön en markmið hins þriðja
gengur út á að bjóða upp á hugbúnað sem bætir almennt flæðið í lærdóms- og
könnunarferlinu.
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Chapter 1

Introduction

The world around us is becoming increasingly populated by interconnected
devices. Think about our cell phones, computers, and even items like cars, super-
market checkouts, ATMs, traffic lights, and hotel room locks. You can find digital
convenience everywhere – from the safety gate at the pool to the subway. In this
digital age, everything is seamlessly connected, making life smoother and more en-
joyable. No more mailing in forms or waiting in long lines for train tickets. The
transformation of our lives through digitisation and automation is well underway.
We’re now talking about concepts like smart cities and connected homes, where
everything from heating and lighting to locks and blinds can be managed through
a simple smartphone app. From 2010 to 2019, the number of connections has in-
creased from 8.8 billion to 20 billion, a compound annual growth rate of 10% [4].
These connected devices range from the most trivial aspects of our lives, such as
lighting or entertainment, to the most critical, such as aviation or even health.

In the ever-evolving landscape of software development, ensuring the reliability
and correctness of complex systems has become a paramount concern. Bugs and
errors in software can lead to disastrous consequences, ranging from financial losses
to compromised security and even loss of life. For instance, due to a race condition
error, the Therac-25 Radiation Therapy Machine sometimes gave its patients radi-
ation doses that were hundreds of times greater than normal between 1985 to 1987
[5]. As another example, software issues related to the Maneuvering Characteris-
tics Augmentation System (MCAS) played a role in two deadly crashes in which
346 people died, involving Boeing 737 MAX planes: Lion Air Flight 610 on Octo-
ber 29, 2018, and Ethiopian Airlines Flight 302 on March 10, 2019. The system
misinterpreted sensor data, causing the aircraft to nosedive uncontrollably. Boeing
737 MAX were subsequently grounded worldwide from March 2019 to November
2020. The accidents and subsequent grounding incurred Boeing approximately $20
billion in fines, compensation, and legal expenses by 2020. Moreover, the ripple
effects led to over $60 billion in indirect losses due to the cancellation of around
1,200 orders [6].
To address these challenges, the field of formal verification, particularly model
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2 CHAPTER 1. INTRODUCTION

checking, has emerged as a powerful technique for exhaustively verifying the cor-
rectness of software systems.

Definition 1.0.1 (Model Checking). Model checking is an automated technique
that, given a finite state model of a system and a formal property, systematically
checks whether this property holds for (a given state in) that model [7].

In this context, a model is an abstraction of the actual system, capturing its
essential behavioural aspects. The process involves exploring all possible states
of the model and verifying if they adhere to specified properties, such as safety,
liveness, deadlock, and more.
Model checking can be used for bug detection, offering a systematic approach to
exhaustively analyse all possible states, helping to uncover bugs that might remain
hidden in testing. In particular, model checking can be applied in the early design
phases to catch issues before propagating deeper into the development process.
Model checking can identify potential safety violations and security vulnerabilities
before these systems are deployed and therefore ensure correct behaviour which
is of utmost importance for safety-critical systems, such as those used in medical
devices, automotive control, and aerospace. Being widely used for verifying the
correctness of communication protocols, model checking ensures that systems ex-
change information accurately and securely. Finally, when a property is violated,
model checking tools can provide counterexamples demonstrating how the violation
occurs. This information can help developers to understand and rectify the issues.

Model checking uses various kinds of formal models to abstract real systems.
Among them are Markov models, a class of mathematical frameworks, that provide
a simple yet powerful way to analyse systems that evolve over time with proba-
bilistic transitions. These models are named after Russian mathematician Andrey
Markov. His work in the late 19th and early 20th centuries laid the foundation for
what would become Markov models. His research focused on probability theory and
stochastic processes, leading to the development of the concept of Markov chains.
Markov chains describe the behaviour of systems where future states depend only
on the current state, rendering them memoryless and suitable for modelling diverse
scenarios. Markov models are used in finance, biology, telecommunications, natural
language processing, robotics and control system, to name a few.

The research problem. Model checking tools typically operate under the pre-
sumption that the model is known. However, in various application domains, this
assumption proves overly stringent. Frequently, the model is either inaccessible or,
at most, only partially discernible. In such scenarios, the model is generally in-
ferred empirically from a collection of partially observable executions, often called
traces.

Employing machine learning to acquire Markov models offers a promising ap-
proach to overcome this challenge. By leveraging large sets of traces, machine
learning algorithms can discern underlying patterns and transitions, ultimately
constructing Markov models that approximate the system’s behaviour. However,
this task is not without its complexities. The curse of dimensionality, where the
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number of possible states grows exponentially with system complexity, can hinder
accurate modelling. Additionally, handling noise, incomplete data, and ensuring
the model’s generalisability are persistent difficulties. Lastly, the process of com-
paring two Markov models, which is useful to assess their performance and select
the most effective one for a specific task, proves to be a challenging endeavour.
Consequently, assessing a learning algorithm’s performance or conducting a com-
parison between two distinct learning algorithms for Markov models can present
difficulties.

Objectives. The goal of this thesis is to address the gap between machine learn-
ing and model checking by advancing the current state-of-the-art in stochastic
model learning. This goal will be accomplished through three distinct approaches:

1. by creating an active learning algorithm to learn Markov decision processes,
2. by designing an algorithm for the estimation of parameters values in a continuous-

time Markov chain modelled in Prism based on a collection of partially-
observable executions 1.

3. by developing a novel library that is seamlessly compatible with state-of-
the-art model checkers (Prism and Storm) facilitating the integration of
stochastic model learning into the classical model checking workflow.

Outline. The document commences with an introductory chapter that elucidates
the fundamental concepts and terminologies employed throughout this thesis. Fol-
lowing this introduction, the document is divided into three distinct parts: (i) State
of the Art, it offers a survey of contemporary techniques for learning Markov mod-
els. It helps readers to understand the current landscape in this field, thus enabling
them to appreciate the novel contributions presented in the thesis. (ii) Contribu-
tions, each of the three primary objectives defined at the outset of the document is
elaborated upon in individual Chapters. These Chapters go deeper into the specific
advancements and innovations introduced by the thesis, providing detailed insights
into each objective. (iii) Epilogue, it synthesises and summarises the key findings,
contributions, and future development of the thesis. This structured outline guides
the reader through a logical progression of concepts, from foundational knowledge
to the novel contributions and, ultimately, to a comprehensive conclusion.

1. We decided to use the Prism modelling language since it is the most popular language to
express compositions of models.
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Chapter 2

Preliminaries

This chapter introduces most of the notations used in this thesis.
For terminology not explicitly shown and for a deeper explanation, we refer to [7].

2.1 A short history of model checking.

The roots of model checking trace back to the 1970s with the introduction of
automata theory and temporal logic into the formal verification landscape. Re-
searchers like Edmund Clarke and E. Allen Emerson formulated the basic ideas of
model checking, envisioning a method that would systematically explore all pos-
sible states of a system to verify desired properties [8, 9]. They also introduced
temporal logic, a powerful language for expressing properties over time.
The ’80s and ’90s saw the creation of two pivotal model checking tools: Murϕ,
developed by David Dill’s team at Stanford University [10], and SPIN, conceived
by Gerard Holzmann at Bell Labs [11]. These tools demonstrated the practicality
of model checking and its ability to uncover subtle errors in complex designs.
As systems grew larger and more complex, the challenge of state explosion prompted
the development of symbolic model checking techniques. This era saw the emer-
gence of BDDs (Binary Decision Diagrams) and SAT solvers (Satisfiability solvers),
enabling efficient representation and manipulation of state spaces. This innovation
greatly expanded the scope of model checking to handle larger designs. However,
these tools support non-stochastic models only, as Kripke structures or finite au-
tomata, which are not sufficient to describe the complexity of current systems.
In 2000, Marta Kwiatkowska’s team released Prism, a probabilistic and symbolic
model checker [12], supporting stochastic models. Sixteen years later, the model
checker Storm was released by Joost-Pieter Katoen’s team at RWTH [13]. On
the one hand, the utilisation of Prism remains predominant and its language has
become a modelling standard. On the other hand, Storm stands out for its
superior efficiency in both spatial and temporal dimensions [14]. As we progress
into the 2020s, model checking continues to evolve alongside technological advance-
ments. Machine learning and AI are being explored to enhance the scalability and
automation of verification processes. Furthermore, there’s a growing emphasis on

5
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model checking for software security, aiming to identify vulnerabilities and prevent
potential cyberattacks.

2.2 Notations
We denote by Σn, Σ∗ and, Σω respectively the set of words of length n ∈ N,

finite length, and infinite length, built over the finite alphabet Σ.
A prefix of a (possibly finite) word w = a1a2 . . . is a finite word w′ = a1a2 . . . ai
with i ∈ N>0 (if w is a finite word of length n we have i ≤ n). We denote by
pref(w) the set of prefixes of a word w. We use also pref(W ) to denote the set of
prefixes of the set of words W , i.e. pref(W ) =

⋃
w∈W pref(w).

We denote by w1 · w2 the concatenation of the two words w1 and w2.

We denote by R and N respectively the sets of real and natural numbers, and
by B the Boolean domain. We denote by |Ω| the cardinality of a set Ω.

Probability theory. To begin, we briefly review some classical notions of mea-
sure and probability from [7] and [15]. These concepts are assumed to be familiar
to the reader. We will use these notions to describe the probability of the possible
executions of models.

Definition 2.2.1 (σ-algebra). A σ-algebra is a pair (Ω,F) where Ω is a nonempty
set and F ⊆ 2Ω is a set of subsets of Ω containing the empty set and being closed
under complement and countable unions, i.e.:

1. ∅ ∈ F ,
2. if F ∈ F , then F = Ω \ F ∈ F , and
3. if F1, F2, · · · ∈ F , then

⋃
n≥1 Fn ∈ F .

In light of the first two conditions, we know that F contains necessarily Ω.
Additionally, due to the third condition, F must be closed under countable inter-
sections, since ⋂

n≥1

Fn =
⋃
n≥1

Fn.

A probability measure on (Ω,F) is a function Pr : F → [0, 1] such that Pr(Ω) =
1, and for (Fn)n≥1 any family of pairwise disjoint events Fn ∈ F :

Pr(
⋃
n≥1

Fn) =
∑
n≥1

Pr(Fn). (2.1)

A probability space is a σ-algebra associated with a probability measure: a proba-
bility space is therefore a triplet (Ω,F , P r).

Let Ω be a countable set. A function µ : Ω → [0, 1] such that
∑

ω∈Ω µ(ω) = 1
induces a probability measure Prµ : 2

Ω → [0, 1] on the discrete σ-algebra 2Ω as
follows: for any F ⊆ Ω subset of Ω, Prµ(F ) =

∑
ω∈F µ(ω). We say that µ is a
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probability distribution on Ω. In the following, we abbreviate Prµ(F ) by µ(F ),
and we denote by D(Ω) the set of discrete probability distributions on Ω.

For a proposition p, we write [[p]] for the Iverson bracket of p, i.e., [[p]] = 1 if p
is true, otherwise 0.

2.3 Markov Models
In this section, we present different classic model formalisms to describe be-

haviours of systems. These models are essentially directed graphs, where nodes
represent states of the system, and edges represent transitions, i.e. state-changes.
Each state is associated to a label describing the meaning of this state. For in-
stance, the states of a model describing a pedestrian traffic light could be labelled
by ‘green’ or ‘red’.
The size of a Markov model M is denoted by |M| and corresponds to the number
of states in this model, i.e. the cardinality of its state space.

Remark 2.3.1. In the literature, the size of a Markov model is sometimes de-
fined as the sum of the size of each of its components, while here we consider the
cardinality of its state space only.

The transitions are defined differently for each formalism.

2.3.1 Markov Chains
In a Markov chain (MC), the next state is chosen according to a probability

distribution over the states. This probability distribution depends on the current
state only.

Definition 2.3.1. A Markov chain is a tuple ⟨S,L, ℓ, τ, π⟩ where
1. S is a finite nonempty set of states,
2. L is a finite nonempty set of labels,
3. ℓ : S → L is a labelling function which assigns a label to each state,
4. τ : S → D(S) is the transition function: the model moves from state s to s′

with probability τ(s)(s′), and
5. π ∈ D(S) is the initial distribution: the model starts in state s with probability

π(s).

Intuitively, M starts in state s with probability π(s). Then, it emits the label
ℓ(s) and moves to state s′ with probability τ(s)(s′). In this sense, M can be
thought of as a state-machine emitting a sequence of labels.

Remark 2.3.2 (Absorbing state). A state s is called absorbing if the model cannot
leave it, i.e. τ(s)(s) = 1.

Remark 2.3.3 (Initial state). π may be a Dirac distribution concentrated in one
state s. In such case, we can use sinit = s instead of π to describe the initial
distribution.
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Example 2.3.1. Let M = ⟨S,L, ℓ, τ, π⟩ be a Markov chain where:
- S = {s1, s2, s3},
- L = {sunny, cloudy, rainy},
- ℓ(s1) = sunny, ℓ(s2) = cloudy and ℓ(s3) = rainy,
- π(s1) = 1.0 and π(s2) = π(s3) = 0.0, and
- τ(s1)(s1) = 0.8, τ(s1)(s2) = 0.2,
τ(s2)(s1) = 0.2, τ(s2)(s2) = 0.6, τ(s2)(s3) = 0.2,
τ(s3)(s2) = 0.3 and τ(s3)(s3) = 0.7.

M could be depicted as in Figure 2.1.

Paths and traces

A path is a sequence in PathsM ⊆ Sω representing an infinite execution of an
MC M, and we denote by PathsMfin ⊆ S∗ the set of finite paths.
Analogously, we define a trace as a sequence of labels in TracesM ⊆ Lω represent-
ing the emission of an infinite execution of M, and we denote by TracesMfin ⊆ L∗

the set of prefixes of TracesM, i.e. the set of finite traces.
When the context is clear, we write Paths, Pathsfin, Traces and Tracesfin re-
spectively instead of PathsM, PathsMfin , TracesM and TracesMfin .
Finally, we define |ρ| the length of a finite path ρ ∈ PathsMfin and |o| the length of
a finite trace o ∈ TracesMfin .

2.3.2 Markov Decision Processes
In Markov decision processes (MDPs), the next state is chosen according to a

probability distribution depending on the current state and an input action given
to the model. Hence, MDPs are reactive variants of MCs, since they reacts to
streams of input actions.

Definition 2.3.2. A Markov decision process is a tuple ⟨S,L, ℓ, A, {τa}a∈A, π⟩
where S,L, ℓ and π are defined as before, and

1. A is a finite nonempty set of actions,
2. τa : S → D(S) is a probabilistic transition function: the model moves from

state s to s′ while a is received as input action with probability τa(s)(s
′).

sunny cloudy rainy1.0

0.2

0.8

0.2

0.2

0.6

0.3

0.7

Figure 2.1 – A simple MC with three states
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Draw

Win

Loss

Rock

Paper

Scissors

1.0

1/3

2/3

1/3

2/3

2/3 1/3

Figure 2.2 – An MDP modelling a Shifumi game where the opponent chooses Rock
with probability 1/3 and Scissors with probability 2/3.

Intuitively, M starts in state s with probability π(s). Then, it emits the label
ℓ(s) and, if it receives an input action a ∈ A, moves to state s′ with probability
τa(s)(s

′). In this sense, M can be thought of as a state-machine that reacts to
a sequence of n actions by emitting a sequence of n + 1 labels (the first label
corresponds to the initial state, then n labels are emitted for the n input actions).

Remark 2.3.4 (Absorbing state). A state s is called absorbing if the model cannot
leave it, i.e. ∀ a ∈ A : τa(s)(s) = 1. Such transitions can be omitted in graphic
representations, as in Figure 2.2.

Remark 2.3.5 (Initial state). π may be a Dirac distribution concentrated in one
state s. In such case, we can use sinit = s instead of π to describe the initial
distribution.

Example 2.3.2. Let ⟨S,L, ℓ, A, {τa}a∈A, π⟩ be an MDP modelling a game of Shifumi.
This game stops once one of two player wins a round. Here, we consider that the
opponent plays always ‘Rock’ with probability 1/3 and ‘Scissors’ with probability
2/3. We have

- S = {s1, s2, s3},
- L = {draw, win, loss},
- ℓ(s1) = draw, ℓ(s2) = win and ℓ(s3) = loose,

- π(s1) = 1.0 and π(s2) = π(s3) = 0.0,

- A = {Rock, Paper, Scissors} and

- τRock(s1)(s1) = 1/3, τRock(s1)(s2) = 2/3,
τPaper(s1)(s2) = 1/3, τPaper(s1)(s3) = 2/3,
τScissors(s1)(s1) = 2/3, τScissors(s1)(s3) = 1/3.

M could be depicted as in Figure 2.2.

Remark 2.3.6 (MC and MDP). An MC M can be viewed as an MDP with only
one action which is implicitly given to M at each transition step.
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Paths and traces

As for MCs, we introduce the notion of path and trace for MDPs. The main
difference consists in the fact that MDP traces and paths include actions.

An MDP path is a sequence in Paths ⊆ (S×A)ω representing a infinite execu-
tion of an MDP, and we define a trace as a sequence in Traces ⊆ (L×A)ω repre-
senting the emission of an infinite execution of an MDP. Pathsfin (resp. Tracesfin)
is the set of finite prefixes of Paths (resp. Traces), as above. Finally, we define
|ρ| the length of a finite path ρ and (resp. |o| the length of a finite trace o), i.e. the
number of states (resp. labels) in the sequence.

Definition 2.3.3 (Scheduler). A scheduler is a function σ : Pathsfin → D(A) that
determines a distribution of actions to take based on the current path.

This notion of scheduler encompasses well-studied classes of schedulers such as
memoryless, deterministic, and randomised (cf. [7]).

2.3.3 Continuous-Time Markov Chains
All the models described so far are discrete-time models: they capture the order

in which events occur, but not their timing. For instance, the MC from Example
2.3.1 represents naively the weather, but it cannot be used for weather forecasting
since it gives no indication of the time elapsing between two weather conditions: it
says that it will be cloudy then rainy, but it does not say when it is going to start
raining.
Continuous-time Markov chains (CTMCs) are extensions of MCs modelling the
order and the timing in which events occur.

Definition 2.3.4. A CTMC is a tuple ⟨S,L, ℓ, R, π⟩ where S,L, ℓ and π are defined
as above, and R : S × S → R≥0 is the transition rate function.

The transition rate function assigns rates r = R(s, s′) to each pair of states
s, s′ ∈ S. A transition from s to s′ can only occur if R(s, s′) > 0. In this case, the
probability of this transition to be triggered within t ∈ R>0 time-units is 1− e−r t.
When, from a state s, there are more than one outgoing transition with positive
rate, we are in presence of a race condition. In this case, the first transition to be
triggered determines the next state of the CTMC. According to these dynamics,
the time spent in state s before any transition occurs, called dwell time, is expo-
nentially distributed with parameter E(s) =

∑
s′∈S R(s, s′), called exit-rate of s.

The probability that the transition from s to s′ is triggered is R(s, s′)/E(s) and is
independent from the time at which it occurs.

Accordingly, for a CTMC M, we construct the embedded MC of M as emb(M) =
⟨S,L, ℓ, τ, π⟩ with transition probability distributions τ : S → D(S) are defined as

τ(s)(s′) =


R(s, s′)/E(s) if E(s) ̸= 0

1 if E(s) = 0 and s = s′

0 otherwise
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Remark 2.3.7 (Absorbing state). A state s is called absorbing if E(s) = 0, that
is, s has no outgoing transition. Accordingly, when the CTMC ends in an absorbing
state it will remain in the same state indefinitely.

Remark 2.3.8 (Initial state). π may be a Dirac distribution concentrated in one
state s. In such case, we can use sinit = s instead of π to describe the initial
distribution.

Example 2.3.3. Let M = ⟨S,L, ℓ, R, π⟩ be a CTMC where:

- S = {s1, s2, s3},
- L = {sunny, cloudy, rainy},
- ℓ(s1) = sunny, ℓ(s2) = cloudy and ℓ(s3) = rainy,

- π(s1) = 1.0 and π(s2) = π(s3) = 0.0, and

- R(s1, s2) = 1.0, R(s2, s1) = 1.0, R(s2, s3) = 1.0, and R(s3, s2) = 1.5.

M could be depicted as in Figure 2.3.

sunny cloudy rainy1.0

1.0

1.0

1.0

1.5

Figure 2.3 – A simple CTMC with three states

Paths and traces

As for MCs and MDPs, we introduce the notion of CTMC paths and traces. In
contrast with MC and MDP paths, CTMC paths may contain dwell times.
Here, for uniformity of treatment, the dwell times that are missing are denoted as
∅.

A CTMC path is a sequence in Paths ⊆ (S × R>0 ∪ {∅})ω representing an
infinite execution of a CTMC.
A CTMC trace is a sequence in Traces ⊆ (L × R>0 ∪ {∅})ω representing an
infinite execution of a CTMC for which we cannot see the states. Finally, we define
Pathsfin and Tracesfin respectively the set of prefixes of Paths and Traces.
We denote by |ρ| (resp. by |o|) the length of a finite path ρ (resp. a finite trace
|o|), i.e. the number of states in the sequence (resp. the number of labels).
Finally, we define

T (o) = {i | 0 ≤ i < n, ti ̸= ∅} (2.2)

with o = s0t0s1 . . . sn ∈ Tracesfin, i.e. the subset of indices of the trace o that
correspond to actual dwell time measurement.
We define T (ρ) similarly, for ρ a finite path of length n.



12 CHAPTER 2. PRELIMINARIES

2.4 Probability Measure of a Markov Model

The probability measure for discrete-time models (MCs and MDPs) must be
defined differently for continuous-time models. Indeed, the probability measure for
continuous-time models involves continuous probability distributions which must
be handled differently than the discrete probability distributions used for discrete-
time models.

2.4.1 Probability Measure of discrete-time models

Following the classical cylinder set construction [7, Ch10] we define the cylinder
set of a finite path ρ as cyl(ρ) = {ρ̂ ∈ Paths | ρ ∈ pref(ρ̂)}.
We define Σ = σ({cyl(ρ) | ρ ∈ Pathsfin}), the smallest σ-algebra that contains all
the cylinder sets cyl(ρ).

An MC M = ⟨S,L, ℓ, τ, π⟩ induces a probability space (Paths,Σ, P rM) where
PrM denotes the (unique) probability measure such that for arbitrary ρ = s0 . . . sn ∈
Pathsfin,

PrM(cyl(ρ)) = π(s0)

n−1∏
i=0

τ(si)(si+1) := PrM(ρ),

and an MDP M induces a probability space (Paths,Σ, P rM) where PrM denotes
the (unique) probability measure such that for arbitrary ρ = s0a0 . . . sn ∈ Pathsfin,

PrM(cyl(ρ)) = π(s0)

n−1∏
i=0

τai
(si)(si+1) := PrM(ρ).

For ρ = s0s1 . . . sn a finite MC path and for i ∈ N≤n, we define:

- Xi : Pathsfin → S as Xi(ρ) = si,

- Yi : Pathsfin → L as Yi(ρ) = ℓ(si), and

- Oi : Pathsfin → Tracesfin as Oi(ρ) = ℓ(s0)ℓ(s1) . . . ℓ(si).

For ρ = s0a0s1a1 . . . an−1sn an MDP path and for i ∈ N≤n, we define:

- Xi and Yi as above,

- Ai : Pathsfin → A as Ai(ρ) = ai
1, and

- Oi : Pathsfin → Tracesfin as Oi(ρ) = ℓ(s0)a0ℓ(s1)a1 . . . ℓ(si−1)ai−1ℓ(si).

We call the induced trace of a finite path ρ the trace emitted by the execution
represented by ρ, i.e. O|ρ|(ρ). For the sake of clarity, we sometimes simply write
O(ρ) instead of O|ρ|(ρ). However, given a finite trace o, several paths could describe
the execution that has emitted o. We denote by Paths(o) the set of paths that
induce o (for the sake of simplicity, we say that Paths(o) is the set of paths induced
by o):

Paths(o) = {ρ ∈ Pathsfin | O(ρ) = o}.
1. Ai is defined for i ∈ N<n since there is no action an
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And we define the probability of a trace o as the sum of the probabilities of the
paths in Paths(o):

PrM(o) =
∑

ρ∈Paths(o)

PrM(ρ)

A special case arises when the model is deterministic:

Definition 2.4.1 (Deterministic model). A Markov model M is deterministic if
and only if

∀o ∈ Tracesfin : |{ρ | ρ ∈ Paths(o) ∧ PrM(ρ) > 0}| ≤ 1

Or equivalently: PrM(o) > 0 =⇒ ∃ρ ∈ Paths(o) s.t.PrM(ρ) = PrM(o)

In practice if, for any state s and label ℓ of a Markov model M, there exists at
most one transition leaving s to a state labelled with ℓ, then M is deterministic.
Example 2.4.1. Consider the non-deterministic MC depicted in Figure 2.4 where
the labels are in red. For the sake of clarity, the probabilities have been omitted in
the representation.

s0
a

s1
b

s2
c

s3
b

Figure 2.4 – A non-deterministic MC.

We can easily see that the induced trace of s0s1s3 is O3(s0s1s3) = abb.
Nevertheless, {s0s1s3, s0s1s1} ⊆ Paths(abb), and PrM(s0s1s3) ·PrM(s0s1s1) > 0.
This proves that this model is non-deterministic.
It’s worth noting that the model becomes deterministic when the self-loop in s1 is
removed.

The likelihood of a finite path ρ under a model M, denoted by l(M; ρ), is the
probability that an infinite execution of M starts by ρ:

l(M; ρ) = PrM(cyl(ρ)).

Similarly, the likelihood of a finite trace o under a model M, denoted by l(M; o),
is the probability that an infinite execution of M starts by emitting o. This value
is equal to

l(M; o) =
∑

ρ∈Paths(o)

l(M; ρ)

We extend the likelihood notion to sets of traces as follows: assuming O is a finite
set of traces drawn independently, the likelihood of O under M is

l(M;O) =
∏
o∈O

l(M; o)
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2.4.2 Probability Measure of continuous-time models
For ρ = s0t0s1t1 . . . sn a finite CTMC path and for i ∈ N≤n, we define:
- Xi and Yi as above,
- Ti : Pathsfin → R>0 ∪ ∅ as Ti(ρ) = ti

2, and
- Oi : Pathsfin → Tracesfin as Oi(ρ) = ℓ(s0)t0ℓ(s1)t1 . . . ℓ(si−1)ti−1ℓ(si).
Since the probability that a CTMC stays in a state for an exact given dwell

time is zero (i.e. the probability that a random variable following any continuous
probability distribution is exactly equal to a given value is zero), the probability
that a CTMC generates exactly any finite path is zero. Therefore, we cannot define
the cylinder set of a CTMC finite path ρ as all finite paths starting with ρ, oth-
erwise the probability of any path under any CTMC will always be zero. Instead,
we define the cylinder set cyl(s0t0 . . . sn−1tn−1sn) of a CTMC finite path as all
infinite paths in ρ ∈ Paths such that Xi(ρ) = si for i = 0, . . . , n and Ti(ρ) ≤ ti for
i ∈ T (ρ) 3. Ti(ρ) is not constrained for 0 ≤ i < n such that i /∈ T (ρ).
We define Σ = σ({cyl(ρ) | ρ ∈ Pathsfin}), the smallest σ-algebra that contains all
the cylinder sets cyl(ρ).

A CTMC M induces a probability space (Paths,Σ, P rM) where PrM denotes the
(unique) probability measure such that, for ρ = s0t0 . . . sn ∈ Pathsfin,

PrM(cyl(ρ)) = π(s0)

n−1∏
i=0

R(si, si+1)

E(si)︸ ︷︷ ︸
from si to si+1

·
∏

i∈T (ρ)

(1− e−E(si) ti)︸ ︷︷ ︸
within ti time units

.

We define the notion of induced trace for continuous-time models as for discrete-
time models. For o ∈ Tracesfin, the set of paths induced by o is

Paths(o) = {ρ ∈ Pathsfin | O(ρ) = o}

In contrast with discrete-time models, the likelihood of a finite path ρ is not equal
to the probability of this finite path. Instead, the likelihood of ρ is given by

l(M; ρ) = π(s0)

n−1∏
i=0

R(si, si+1)

E(si)︸ ︷︷ ︸
from si to si+1

·
∏

i∈T (ρ)

(E(si)e
−E(si) ti)︸ ︷︷ ︸

in ti time units

.

The likelihood of a finite trace o under a model M, denoted by l(M; o), is the
likelihood that an infinite execution of M starts by any path inducing o:

l(M; o) =
∑

ρ∈Paths(o)

l(M; ρ)

Remark 2.4.1. If T (o) = ∅, i.e. if the trace does not contain any dwell time, then
l(M; o) = l(emb(M); o)

2. Ti is defined for i ∈ N<n

3. Reminder: T is defined in (2.2)
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We extend the likelihood notion to sets of traces as follow:
given O a finite set of traces, the likelihood of O under M is

l(M;O) =
∏
o∈O

l(M; o)

2.4.3 Measuring the difference between models
In this Subsection, we present the two measures used in this document to com-

pare Markov models. This process is crucial as it allows for the evaluation of the
performance of two Markov models, facilitating the selection of the most suitable
one for a specific task. Additionally, comparing the output models of two learning
methods in the same context enables the identification of the more efficient method
for that context.

First, we introduce the notion of trace equivance:

Definition 2.4.2 (Trace equivance). Two models M and M′ are trace equivalent
iff

∀o ∈ TracesMfin ∪TracesM
′

fin : l(M; o) = l(M′; o)

We write M ≡ M′.

Definition 2.4.3 (the loglikelihood distance). Given two Markov models M and
M′ and a set of finite traces O, the loglikelihood distance between M and M′ is

L(M,M′;O) =
1

|O| | ln l(M;O)− ln l(M′;O)|

The loglikelihood distance is the average of the absolute differences between the
loglikelihood under M and M′ of O.
Example 2.4.2. The first model is the MC depicted in Figure 2.1, and the two
others are slightly modified versions of the first one.

Let O = {{‘sunny’,‘cloudy’,‘rainy’,‘rainy’},{‘sunny’,‘sunny’,‘sunny’,‘cloudy’}}.
The loglikelihood of O under each of these three model is ln l(M0;O) = −2.816,
ln l(M1;O) = −3.103, ln l(M2;O) = −2.469. From this information, M2 is the
most suitable for O. In other words, if the point is to choose a model that max-
imises the probability of generating O, one should choose M2.
The loglikelihood distance on the other hand compares the likelihood of given set
of traces under two models. Here, the loglikelihood distances are L(M0,M1;O) =
0.288,L(M0,M2;O) = 0.347. Therefore, if the objective is to choose the model
the closer to M0 one should choose M1.

2.5 Few words about Hidden Markov Models

2.5.1 The classic Hidden Markov Models
Initially introduced by Baum in the 1960s for speech recognition, Hidden Markov

Models (HMMs) has now applications in various domains, such as bioinformatics[16,
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(c) M2

Figure 2.5 – Three slightly different MCs.

17, 18], computational finance [19] and cryptanalysis [20].
HMMs can be seen as extensions of MCs where each state is associated to a prob-
ability distribution over the set of labels L. Formally:

Definition 2.5.1 (Hidden Markov Model). An HMM is a tuple ⟨S,L, a, b, π⟩ where
S,L and π are defined as above, and:

1. a : S 7→ D(S) is a transition function: the model moves from state s to s′

with probability a(s)(s′), and
2. b : S 7→ D(L) is the generation function: while in state s, the model generates

ℓ with probability b(s)(ℓ).

Example 2.5.1. In this example, we build an HMM to estimate the current outdoor
temperature (cold, hot, or temperate) based on the headwear (cap or hat) worn by
individuals who enter a building. Such HMM could be M = ⟨S,L, a, b, π⟩ with

- S = {s0, s1, s2},
- L = {hat, cap},
- a(s0)(hat) = 0.8, a(s0)(hat) = 0.2
a(s1)(hat) = 0.3, a(s1)(cap) = 0.7
a(s2)(cap) = 1.0.
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- b(s0)(s0) = 0.4, b(s0)(s1) = 0.6
b(s1)(s0) = 0.3, b(s1)(s1) = 0.5, b(s1)(s2) = 0.2,
b(s2)(s1) = 0.4, b(s2)(s2) = 0.6.

- π(s0) = 1.0.

According to the generation functions, we could see s0 as a state representing the
cold temperature, s1 the tempered one and s2 the warm one. However, these are
interpretations: the only concrete observations are the labels ‘cap’ and ‘hat’.
M can be depicted as in Figure 2.6.

hat: 0.8
cap: 0.2

hat: 0.3
cap: 0.7

hat: 0.0
cap: 1.0

1.0

0.6

0.4

0.3

0.2

0.5

0.4

0.6

Figure 2.6 – An HMM for inferring outdoor temperature based on headwears.

Paths and traces HMM traces are defined as MC traces, while HMM paths
contains labels as follow:
a path is a sequence in PathsM ⊆ (S × L)ω representing an infinite execution of
an HMM M. We denote by PathsMfin ⊆ (S × L)∗ the set of finite paths.

The likelihood of a finite path ρ = s0ℓ0 . . . snℓn of length n under an HMM M,
denoted by l(M; ρ), is the probability that an infinite execution of M starts by ρ:

l(M; ρ) = PrM(cyl(ρ)) = π(s0) · b(s0)(ℓ0) ·
n−1∏
i=0

a(si)(si+1) · b(si+1)(ℓi+1).

The likelihood of a finite trace o = ℓ0 . . . ℓn of length n under M can be computed
as follow:

l(M; o) =
∑

s0,...,sn∈Sn

l(M; s0ℓ0 . . . snℓn)

HMMs differ from MCs only in the fact that HMM states are not associated
with one label but a probability distribution over the labels. In the following, we
present a method to construct, given any HMM, a trace equivalent MC.

Definition 2.5.2. Given an HMM M = ⟨S,L, a, b, π⟩, the MC induced by M is
M(M) = ⟨S′,L, ℓ, τ, π′⟩ such that:

1. S′ = {(s, x) | ∀s ∈ S, x ∈ L},
2. ∀(s, x) ∈ S′ : ℓ((s, x)) = x,
3. ∀(s, x) ∈ S′ : π′((s, x)) = π(s) · b(s)(x), and
4. ∀(s, x), (s′, x′) ∈ S′ : τ((s, x))((s′, x′)) = a(s)(s′) · b(s′)(x′).
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Theorem 2.5.1. For all HMM M:

M ≡ M(M)

Proof. Let M = ⟨S,L, a, b, π⟩ be an HMM and o = ℓ0, . . . ℓn ∈ Ln, for any n ∈ N,
be any trace in TracesMfin (and therefore in Traces

M(M)
fin ). By definition:

l(M(M); o) =
∑

ρ∈Paths(o)

l(M(M); ρ)

=
∑

s0,...,sn∈Sn

π′((s0, ℓ0)) ·
n−1∏
i=0

τ((si, ℓi))((si+1, ℓi+1))

=
∑

s0,...,sn∈Sn

π(s0) · b(s0)(ℓ0) ·
n−1∏
i=0

a(si)(si+1) · b(si+1)(ℓi+1)

= l(M; o)

Example 2.5.2. Let M be the HMM described in Example 2.5.1, M(M) is depicted
in Figure 2.7.

hat

cap

hat

cap cap

0.8

0.2

0.08

0.32

0.18

0.42

0.08

0.32

0.18

0.42

0.06

0.24 0.15

0.35

0.06

0.24 0.15

0.35 0.6

0.12

0.28

Figure 2.7 – MC induced by the HMM from Example 2.5.1.

In this thesis we do not consider HMMs but MCs instead, since there exists for
any HMM a trace equivalent MC, by Theorem 2.5.1.

2.5.2 Gaussian Hidden Markov Models
In the previous Subsection we defined the classic notion of HMM, where the

generation function is a discrete probability distribution over the set of labels L.
However, one could consider other probability distributions, even non discrete. In
the same way, we could attach n probability distributions to each state: therefore,
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at each transition step, n observations will be generated (one by each probability
distribution attached to the current state).

A Gaussian observations Hidden Markov Model (GoHMM) is a HMM where
each state is attached to n gaussian distributions instead of one discrete probability
distribution over L. Hence, a GoHMM generates n continuous observations at each
transition step.

Definition 2.5.3 (Gaussian observations Hidden Markov Model). A GoHMM is
a tuple ⟨S, a, n, {θs}s∈S , π⟩ where S, a and π are defined as above, and:

— n is the degree of the model,

— θs = {θ(1)s , . . . , θ
(n)
s } are the parameters used by the n Gaussian distributions

to generate the observations while in state s, where θ
(i)
s = {µ(i)

s , σ
(i)
s }.

In this context, an observation is a vector of n real values.

Remark 2.5.1. In the literature, such model are sometimes called ‘independent
GoHMM’, since all the n distributions are independent one from another.

Paths and traces A GoHMM path is a alternating sequence of states and ob-
servations. Formally, a infinite path of a GoHMM M is a sequence in PathsM ⊆
(S × Rn)ω, and a finite path is a sequence in PathsMfin ⊆ (S × Rn)∗. A GoHMM
trace is a path without the states, i.e. is a sequence of observations. A trace
of M is a sequence in TracesM ⊆ (Rn)ω, and a finite trace is a sequence in
TracesMfin ⊆ (Rn)∗.
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Foreword

This section provides an overview of the current state-of-the-art techniques to
learn Markov models. The main goal of this section is to provide the reader with
valuable insights into the field’s present advancements and develop a deeper ap-
preciation for the improvements introduced in this thesis. It is beyond the scope
of this section to provide technical details of each of the presented learning tech-
niques. The interested reader may find such details by following the references
given throughout the section.
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Chapter 3

Methods

In this chapter we present the main algorithms for learning stochastic mod-
els with their strengths and weaknesses. These algorithms solve the problem of
learning stochastic models using different approaches.

Maximum Likelihood Estimation (MLE). MLE works under the assump-
tion that the model to learn belongs to a parametric family of models. The goal
of maximum likelihood estimation is to determine the parameter values for which
the observed data achieve the highest joint likelihood. Typically, the joint likeli-
hood surface is not convex, and computing its global maximum is often computa-
tionally intractable. The literature presented a number of techniques to approxi-
mate the MLE problem: Expectation-Maximisation (EM) algorithm [21], Minorize-
Maximization (MM) algorithm [22, 23], Monte Carlo EM algorithm [24]. One of
the most popular is the Expectation-Maximisation method.

The EM algorithm is an iterative optimisation technique used for problems in-
volving latent variables. It operates by iteratively improving parameter estimates
in situations where data is incomplete or has hidden variables. The algorithm has
two main steps in each iteration: the E-step (Expectation step) and the M-step
(Maximisation step). In the E-step, it computes the expected values of the latent
variables based on the current parameter estimates. In the M-step, it updates the
parameter estimates by maximising the likelihood of the observed data, treating
the expected latent variable values from the E-step as if they were observed. These
steps alternate until convergence, with each iteration ideally bringing the parameter
estimates closer to the true underlying values. EM aims to maximise the likelihood
of the observed data (observed variables) while accounting for unobserved variables
(latent variables).
The Baum-Welch (BW) algorithm [25, 26, 27] is a specific application of the EM
algorithm to the context of Markov models. In this context, the E-step involves
computing the probabilities of hidden states given observations, while the M-step
updates the model’s parameters based on these probabilities. Therefore, the like-
lihood of the training set under the hypothesis increases all along the learning
process. Despite its sensitivity to initial probabilities and the possibility of being

25
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trapped in local optima, this technique has proven to be successful in practical
applications on numerous occasions [26, 28, 29, 30].
Recently, moment-based approaches a.k.a. spectral learning have gained popularity
as an alternative approach to EM [31, 32].

State-Merging. The second idea is to start with a model possessing a large
number of states to precisely represent the training set. Subsequently, a series
of iterations are employed to systematically merge the states of this automaton,
thereby enhancing the model’s conciseness and compactness. This time, the like-
lihood of the training set under the hypothesis decreases all along the learning
process.

Learning with queries. Rather than learning from a training set alone, the
third idea involves interacting with the system under learning (SUL). Thus, it is
not necessary to have a training set, but the algorithm must be able to interact
with the SUL.
These algorithms are inspired by the L∗algorithm, developed by Angluin in 1987
[33], to learn regular languages. The L∗algorithm operates within the framework
of a ‘teacher’ and a ‘learner.’ The ‘teacher’ represents the system or process whose
underlying formal language needs to be inferred. The learner, on the other hand,
is the algorithm itself, seeking to learn the language through interactions with
the teacher. The teacher provides responses to membership queries and equiva-
lence queries posed by the learner. Membership queries involve the learner asking
whether specific strings belong to the language, and the teacher responds with a
‘yes’ or ‘no’. Equivalence queries are more comprehensive; the learner proposes a
hypothesis language, and the teacher responds with a counterexample that high-
lights any discrepancies between the hypothesis and the actual language. By itera-
tively refining its hypothesis through a combination of membership and equivalence
queries, the learner endeavours to converge towards an accurate description of the
language underlying the system, effectively bridging the gap between observed be-
haviour and the formal language that governs it.

Bayesian learning. Finally, the last approach encompasses algorithms using
Bayesian methods. This category contains an algorithm based on Bayesian infer-
ence to learn MCs [34] and an algorithm using Bayesian Reinforcement learning to
learn MDPs [35].

These methods belong to two categories, active and passive. Active learning
methods learn from interactions with the SUL, while passive methods learn from
the training set only. Active learning methods are usually more efficient (in terms
of data), but can be used only if it is possible to interact with the SUL.

Some learning methods allow the user to decide the size (i.e. the number of
states) of the output model, preventing the algorithm from generating models too
large to be efficiently analysed. The downside of such a feature consists in the fact
that, if the number of states requested is too large (resp. small), the output model
may overfit (resp. underfit) the training set.
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Some learning methods described below assume the Markov model underlying
the SUL to be deterministic. When such methods are exercised with a SUL that
is non-deterministic, they are not granted to converge to the true model, instead,
they will return a deterministic model that approximates the SUL. Typically, the
approximated model is larger than the SUL.

This chapter is divided in three sections corresponding to the first three different
approaches, the last not being covered in this thesis.

3.1 The Expectation-Maximisation approach

Expectation-Maximisation (EM) is a method to estimate a mixture of parame-
ters. Although the EM algorithm had been used in various contexts since the 1950s
[36, 37], it was not formally defined until 1977 by Dempster, Laird, and Rubin [21].

The EM algorithm assumes that the training set is incomplete: the goal of the
EM algorithm is to maximise the likelihood of the parameters of a mixture model
assuming that some data is missing in the available training set. The EM algorithm
converges to a local maximum of the likelihood of the training set [38].

The EM algorithm is typically applied to solve the maximum likelihood esti-
mation problem for a set of parameters θ and a set of observed data X, when the
likelihood function l(θ;X) is more naturally expressed as the marginal likelihood
relative to a set of unobserved latent data (or missing values) Z, i.e.,

l(θ;X) =
∑
z

Prθ(z)Prθ(X | z) (3.1)

The above likelihood function is often intractable since z is unobserved and its
distribution Prθ(z) is typically determined by the parameters θ.

The EM algorithm is an iterative optimisation technique aimed at maximis-
ing Equation (3.1). Starting from an initial parameter estimate θ0, the current
parameter estimate θm is updated by applying the following steps:

Expectation step (E-step) Compute the expected value of the log-likelihood
function relative to the conditional distribution of Z, given the observed data
X and the current parameter value estimates θm

Q(θ|θm) =
∑
z

Prθm(z | X) lnPrθ(X, z) (3.2)

Maximisation step (M-step) The next parameter estimates θm+1 are found as
those achieving the maximum value of Q(θ|θm), called the surrogate function.
Formally

θm+1 = argmax
θ

Q(θ|θm) .

Notably, the new parameter estimate improves with respect to the previous one in
the sense that l(θm;X) ≤ l(θm+1;X).
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Theorem 3.1.1 (Convergence of the EM algorithm). The EM algorithm converges
to a local maximum of the likelihood of the training set [38].

For the proof, see Appendix A.1.

The EM algorithm, while a powerful tool for solving problems involving latent
variables, can exhibit slow convergence to local optima. The method’s performance
is contingent on the initial choice of parameter values: some initial parameter esti-
mates may lead the procedure to converge to local maxima rather than global ones.
Consequently, selecting appropriate initial parameter values becomes a critical con-
sideration for enhancing both the efficiency and effectiveness of the optimisation
procedure. This phenomenon has been extensively studied in the literature [38, 39].
To mitigate the impact of slow convergence and improve the algorithm’s perfor-
mance, practitioners often employ strategies like multiple restarts with varying
initial values and leveraging domain knowledge to provide more informed initial
estimates.

The Baum-Welch algorithm is an application of the Expectation Maximisation
optimisation framework to Markov models. Initially designed in the early 1970s by
Baum and Welch for HMM learning [26, 27], the BW algorithm has been extended
to various families of Markov models. In this context, the observed data X (i.e.
the training set) is a set of traces, while the latent data Z is the corresponding
set of paths. The parameters to estimate, θ, are the transition probabilities, or
transition rates for CTMCs.
As EM, BW assumes that the model belongs to a parametric family of models.
Here, the family is defined by the type of Markov model (e.g. MC, MDP, etc . . . )
and the number of states. Therefore, BW allows the user to decide the size of
the output model. As the EM algorithm, BW is a passive learning method. The
statistical guarantees of the BW algorithm convergence are discussed in [40].

Finally, BW is known to be costly in terms of time and memory complexity:
in [41], the authors cite several cases where, due to its cost, the BW algorithm
could not be applied. Several attempts have been made to improve BW efficiency
[42, 43, 44].

Baum-Welch in a nutshell.

In the context of learning a Markov model from a set of traces O, the parameters
to estimate are the transition probabilities/rates and the initial state probability
distribution π, the set of observed data are the traces in O, and the latent data are
the paths. Therefore, the surrogate function Q becomes:

Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

l(Mm; ρ) ln [l(M; ρ)]

The Baum-Welch algorithm starts with an initial hypothesis M0 which is it-
eratively updated, following the EM algorithm, in a way that the likelihood is
nondecreasing at each step, that is l(Mm;O) ≤ l(Mm+1;O), until the likelihood
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BW(O,M0)

1 i = 0
2 repeat
3 (α, β) = Forward-Backward(Mi,O) // E-step
4 Mi+1 = Update(Mi,O, α, β) // M-step
5 i = i+ 1
6 until l(Mi;O)− l(Mi−1;O) ≤ ϵ
7 return Mi

Algorithm 3.1.1 – Baum-Welch algorithm

difference between the current and the previous hypothesis goes below a fixed
threshold ϵ (cf. Algorithm 3.1.1).
As the Update procedure does not introduce or eliminate any states, the resulting
model will contain the same number of states as the initial hypothesis. Conse-
quently, by providing the initial hypothesis, the user has the freedom to determine
the size of the output model.

The Update procedures for MCs, MDPs and CTMCs are described in the
following Subsections. The justifications are given in Appendix A.2, A.3 and A.4.

3.1.1 The Baum-Welch algorithm for learning MCs

In this Subsection we describe the Update procedure for the BW algorithm
applied to MC learning. For the justification, see Appendix A.2.

For o = ℓ0 . . . ℓT a trace and an MC M, we define the forward and the backward
functions αo, βo : S × {0 . . T} → [0, 1] as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Xi = s] .

These can be calculated according to the following recurrences

αo(s, i) =

[[ℓ0 = ℓ(s)]] · π(s) if i = 0

[[ℓi = ℓ(s)]] ·
∑
s′∈S

αo(s
′, i− 1) · τ(s′)(s) if 0<i≤T

βo(s, i) =

[[ℓT = ℓ(s)]] if i = T

[[ℓi = ℓ(s)]] ·
∑
s′∈S

τ(s)(s′) · βo(s
′, i+ 1) if 0≤ i<T

Additionally we define, for o a trace of length T , the two functions γo : S×{0 . . T} →
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[0, 1] and ξo : S × {0 . . T − 1} × S → [0, 1] as

γo(s, i) = PrM[Xi = s|OT = o] , (3.3)

ξo(s, i)(s
′) = PrM[Xi = s,Xi+1 = s′|OT = o] . (3.4)

Intuitively, γo(s, i) is the likelihood of being in state s at the i-th steps given that the
trace o has been observed, and ξo(s, i)(s

′) is the likelihood that the i-th transition
is the transition from s to s′ given that the trace o has been observed. Note that
these definitions hold for MCs as well as for any kind of Markov model.

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · τ(s)(s′) · βo(s
′, i+ 1)∑

u∈S αo(u, i)βo(u, i)

For MCs, the Update procedure updates π and τ as follows:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

τ̂(s)(s′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|−1
i=0 γo(s, t)

Remark 3.1.1. These values for π̂(s) and τ̂(s)(s′) are simply the analytic solution
of argmaxM Q(M|Mm). The justifications are given in the Appendix A.2.

Remark 3.1.2. One may incur in the situation where
∑

o∈O
∑|o|−1

i=0 γo(s, i) = 0,
indicating that the state s does not play a role in the observed dynamics. In this
case the update procedure leaves the distribution τ(s) unchanged.

3.1.2 The Baum-Welch algorithm for learning MDPs

In this Subsection we describe the Update procedure for the BW algorithm
applied to MDP learning. For the justification, see Appendix A.3.

For o = ℓ0a0 . . . ℓT a trace and an MDP M, we define the forward and the
backward functions αo, βo : S × {0 . . T} → [0, 1] as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s | A0:i−1 = a0 . . ai−1] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Ai:T−1 = ai . . aT−1, Xi = s] .
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These can be calculated according to the following recurrences

αo(s, i) =

[[ℓ0 = ℓ(s)]] · π(s) if i = 0

[[ℓi = ℓ(s)]] ·
∑
s′∈S

αo(s
′, i− 1) · τai−1(s

′)(s) if 0<i≤T (3.5)

βo(s, i) =

[[ℓT = ℓ(s)]] if i = T

[[ℓi = ℓ(s)]] ·
∑
s′∈S

τai
(s)(s′) · βo(s

′, i+ 1) if 0≤ i<T (3.6)

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · τai
(s)(s′) · βo(s

′, i+ 1)∑
u∈S αo(u, i)βo(u, i)

For MDPs, the Update procedure updates π and τ as follows:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

τ̂a(s)(s
′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′) · [[ai = a]]∑
o∈O

∑|o|−1
i=0 γo(s, i) · [[ai = a]]

with γ and ξ defined as in (3.3) and (3.4).

Remark 3.1.3. As for MCs, one may incur in the situation where
∑

o∈O
∑|o|−1

i=0 γo(s, i)·
[[ai = a]] = 0, indicating that the state s does not play a role in the observed dy-
namics. In this case the update procedure leaves the distribution τa(s) unchanged.

3.1.3 The Baum-Welch algorithm for learning CTMCs

Let M = ⟨S,L, ℓ, R, π⟩ be a CTMC. For all states s, s′ ∈ S, we define τ(s)(s′) =
R(s)(s′)/E(s), and λs = E(s). Intuitively, when M is in state s, it waits for a
duration exponentially distributed with parameter λs and moves to state s′ with
probability τ(s)(s′) := τs,s′ .

In the following we show how the Baum-Welch Update procedure works for
CTMCs. For the justification, see Appendix A.4.

For o = ℓ0t0 . . . ℓT a timed trace and a CTMC M, we define the forward and
the backward functions αo, βo : S × {0 . . T} → [0, 1] as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s|T0:i−1 = t0 . . ti−1] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Ti:T−1 = ti . . tT−1, Xi = s] .
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These can be calculated according to the following recurrences

αo(s, i) =

[[ℓ0 = ℓ(s)]] · π(s) if i = 0

[[ℓi = ℓ(s)]] ·
∑
s′∈S

αo(s
′, i− 1) · τ(s′)(s) · λs′ e

−λs′ ti if 0<i≤T

βo(s, i) =

[[ℓT = ℓ(s)]] if i = T

[[ℓi = ℓ(s)]] ·
∑
s′∈S

τ(s)(s′) · λs e
−λs ti · βo(s

′, i+ 1) if 0≤ i<T

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · λs e
−λs ti · τ(s)(s′) · βo(s

′, i+ 1)∑
u∈S αo(u, i)βo(u, i)

Given a set of timed traces O, the Update procedure updates π and R as fol-
lows:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

R̂(s)(s′) =

∑
o∈O

∑|o|
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|
i=0 ti γo(s, i)

with γ and ξ defined as in (3.3) and (3.4).

Remark 3.1.4. As for MCs and MDPs, one may incur in the situation where∑
o∈O

∑|o|−1
i=0 γo(s, i) = 0, indicating that the state s does not play a role in the

observed dynamics. In this case the update procedure leaves the distribution τ(s)
unchanged.

Few words about the initial hypothesis. Usually, BW starts with a hypoth-
esis where all the transitions are randomly initialised such that all of them have
a non-zero probability. As a result, the original hypothesis exhibits sufficient ex-
pressiveness, as the likelihood of any trace in the training set under the hypothesis
surpasses zero. Therefore, we do not encounter situations where the likelihood of a
trace in the training set under the current hypothesis is zero, as in Remark 3.1.2,
3.1.3 and 3.1.4. However, since the quality of the output model depends on the ini-
tial hypothesis (the local optimum reach at the end of a BW execution depends on
the initial hypothesis and the stop condition), the issue of obtaining a high-quality
initial hypothesis while minimising costs has been thoroughly investigated in [45].
So far, the commonly used technique is random restart : the learning process is
repeated n times (with n being an arbitrary value) using n different random initial
hypotheses, and only the best output model in terms of loglikelihood distance un-
der a test set is retained. This method is the simplest one and performs reasonably
well, but it is not very efficient in terms of running time.
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3.2 The State-Merging approach
The state-merging approach is a method commonly used in Markov model

learning algorithms. Starting from a maximal tree-shaped model, this approach
iteratively merges pairs of states based on their similarity until no further state
aggregations are possible (see Figure 3.1). The maximal tree-shaped model is a
prefix tree acceptor or one of its extension.

Figure 3.1 – State merging approach workflow [2]

Definition 3.2.1 (Prefix Tree Acceptor). A Prefix Tree Acceptor (PTA) is a tree-
shaped Markov chain built over a set of traces O. Each state of the PTA corresponds
to a prefix in pref(O) and is labelled with the last symbol of its corresponding prefix.
For any w ∈ pref(O), there exists exactly one path ρ in the PTA build over O such
that

O(ρ) = w ∧ Pr(ρ) > 0.

The probability of the transition from s, corresponding to the prefix w, to s′ is equal
to

|{o ∈ O|w · ℓ(s′) ∈ pref(o)}|
|{o ∈ O|w ∈ pref(o) ∧ |o| > |w|}| .

Example 3.2.1. The PTA for a set of words containing ‘aa’ twice, ‘aaaa’ five times,
‘ab’ and ‘abaa’ once, ‘abaaa’ three times, ‘abab’ twice and ‘ababa’ 8 times is de-
picted in Figure 3.2.
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Figure 3.2 – Example PTA
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(b) Transition redirection
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Figure 3.3 – Merge of sABA into sA, where only the numerators of the transition
probabilities are shown.

The seminal algorithm based on this approach is Alergia, designed by Carrasco
and Oncina in the 1990s [46, 47], to learn MCs. Alergia has been adapted to
CTMCs by Sen et al. in 2004 [48] and to MDPs by Mao et al. in 2012 [49]. The
same year, Chen et al. developed an active extension of the latter [50].
In 2000, Thollard et al. proposed another state-merging based algorithm to learn
MCs: the MDI algorithm (for Minimal Divergence Inference) [51].
We present these five algorithms in the five following Subsections.

3.2.1 Alergia: a learning algorithm for MCs

Given a training set O and a confidence level parameter α, Alergia starts by
building the prefix tree acceptor (PTA) for O (see example 3.2.1). Then, the algo-
rithm checks the compatibility of each pair of states in a top-down order (starting
from the root state and progressing towards the leaf states) using the Hoeffding
bound [52] with the parameter α, and merges each compatible pair (see example
3.3). It stops when no pair of states can be merged.

Due to its exclusive reliance on the training set for learning, Alergia is a passive
learning algorithm.
It’s easy to see that when using Alergia, the user cannot decide a priori what size
the output model will be. Indeed, it is impossible to know in advance how many
times the algorithm will perform a merging operation during its execution.
Furthermore, the model resulting from an Alergia run is necessarily deterministic.
Indeed, Alergia starts with a PTA that is deterministic by construction and will
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then only merge compatible states which have the same label. As a consequence,
state merging cannot introduce non-determinism. When employed on a dataset
that has been generated by a non-deterministic model, Alergia produces a deter-
ministic model that approximates the original one. In this case, the learned model
tends to be much larger than the original.

The Alergia algorithm is guaranteed to converge to a deterministic MC that
approximates the underlying probabilistic process as more sequences are provided
[46].
Finally, the time complexity of the Alergia algorithm is relatively efficient. The
algorithm’s complexity is polynomial in the size of the input sequences.
An empirical comparison of Alergia and BW on two small MCs is poroposed in
Section 7.5.1.

3.2.2 TAlergia: a learning algorithm for CTMCs

In the following we describe the Alergia extension for CTMC learning presented
in [48]. No name have been assigned to this algorithm in [48] neither in the litera-
ture. In this document, we call it TAlergia, for Timed-Alergia.
TAlergia differs from Alergia on two points: the PTAs and the compatibility tests
used by TAlergia are slightly adapted to include the dwell times. An example of
TPTA is given in Figure 3.4.

In TAlergia, the training set O contains sequences of label-dwell time pairs.
These dwell time must be included in the initial prefix tree. To do so, TAlergia
uses timed prefix tree acceptors (TPTAs), that are PTAs where each state is also
associated to an average empirical dwell time t̂s, i.e the inverse of the empirical
exit rate.

Two TPTA states are compatible if the transition probability distributions over
their successor states as well as their exit-rates are compatible. As Alergia, TAler-
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Figure 3.4 – An example of TPTA, with empirical dwell times in orange, where
only the numerators of the transition probabilities are shown.
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gia uses the Hoeffding bound to check the compatibility of the transition probability
distributions. Additionally, TAlergia checks the exit-rates compatibility using an
F -test [53].

Apart from the two previous points, TAlergia is identical to Alergia. Therefore,
as Alergia, TAlergia is a passive learning algorithm, doesn’t allow the user to decide
the size of the output model, and cannot learn non-deterministic models.

As Alergia, TAlergia is guaranteed to converge to a deterministic CTMC, as
the training set grows. The proof in [48] follows the same structure as the one for
Alergia in [46].

3.2.3 IOAlergia: a learning algorithm for MDPs

IOAlergia [49] differs from Alergia on two points: the PTAs and the compati-
bility tests used by IOAlergia are slightly adapted to include MDP actions.

In IOAlergia, the training set O contains sequences of label-action pairs. These
actions must be included in the initial prefix tree. To do so, IOAlergia uses IOP-
TAs, that are PTAs where each edge is associated to an action. An example of
IOPTA is given in Figure 3.5.
IOAlergia compatibility checks are therefore adapted to include these actions.
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Figure 3.5 – An example of IOPTA with two actions ‘red’ and ‘blue’, where only
the numerators of the transition probabilities are shown.
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Apart from the two previous points, IOAlergia is identical to Alergia. There-
fore, as Alergia, IOAlergia is a passive learning algorithm, doesn’t allow the user
to decide the size of the output model, and cannot learn non-deterministic models.

The proof of convergence for IOAlergia in [49] follows the same structure as the
one for TAlergia [48] and for Alergia [46].

Due to the introduction of actions, learning an MDP is more complexe than
learning a MC or a CTMC. Indeed, the number of transition probability/rate to
estimate while learning a MC/CTMC is equal to |S|2, and is equal to |S|2×|A| while
learning an MDP. Hence, when considering the identical number of states within
the underlying Markov model of the SUL, achieving a comparable level of output
quality in loglikelihood distance necessitates a larger training set for learning an
MDP in contrast to MC or CTMC.

3.2.4 MDI: a learning algorithm for MCs

Alergia first evaluates if a pair of states are ‘close enough’ and then, if they are,
merges these two states. On the contrary, MDI starts by merging two states and
then compares if the resulting model is ‘close enough’ to the previous one (before
merging) [51]. If it is not the case, the merge is discarded.
MDI uses the KL divergence (see [54]) to compare two models. Let M(0) be the
PTA build from the training set, M(n) be the temporary model obtained after
merging two states at any moment during the MDI execution, and M(n+1) be
another model resulting of the merge of two states in M(n). M(n) is kept only if
the KL divergence increase caused by the merge leading to M(n+1) is small enough
relatively to the size reduction. Formally, M(n) is kept if

K(M(0),M(n+1);O)−K(M(0),M(n);O)

|M(n)| − |M(n+1)| < ϵ,

with O the training set, and ϵ a given compatibility threshold.

In [51], the authors show empirically that MDI outperforms Alergia in terms
of perplexity (capability to guess the next symbol) and generalisation. On the
other hand, MDI incurs higher computational demands compared to some other
algorithms, as it necessitates the calculation of two KL divergences for each state
merge.

3.3 Learning with Queries

In 1987, D. Angluin developed an algorithm capable of learning a language
using a DFA (deterministic finite automaton) as a model, through interactions with
a ‘teacher’ [33]. The interactions between the algorithm and the teacher involve
two types of questions:
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1. Membership queries: The algorithm asks the teacher whether a given word
belongs to the language it needs to learn, and the teacher responds with either
a yes or a no.

2. Equivalence queries: The algorithm asks the teacher whether the DFA it has
constructed corresponds to the language it was supposed to learn. Here, the
teacher responds with either a yes or with a counterexample, which is a word
that is accepted by the DFA but not the language being learned, or vice versa.

The algorithm, called L∗, uses the answers to these questions to iteratively con-
struct a DFA that represents the language it is trying to learn. By using these
queries, L∗ can learn a language efficiently, without having to examine all possible
words in the language.
In practice, such a teacher does not exist: instead, the algorithm accesses the SUL
which acts as a black box. The difficulty of the implementation of such a learning
method lies on the one hand in the algorithm itself and on the other hand in the
development of methods to efficiently simulate the teacher from the black box.

Angluin’s L∗ algorithm became rapidly the foundation for many active au-
tomata learning algorithms to learn other formalisms, such as Mealy machines
[55, 56] and extended finite state-machines [57], non-deterministic Mealy machines
[58], and MDPs (called L∗

MDP ) [59].

SUL Teacher Learner

L
reset

L
step

none/CE

eq
set of traces

rq
true/false

cq
[0, 1]

fq

Figure 3.6 – Interactions between the SUL, the teacher and the learner.

In the remainder of this section, we briefly overview the L∗
MDP algorithm in-

troduced by Tappler et al in [59].
Let M = ⟨S,L, A, {τa}a∈A, π⟩ be the MDP representing the SUL. The L∗

MDP al-
gorithm interacts with the SUL through two operations:

- reset: resets the SUL to (one of) its initial state: state s is chosen to be the
current state with probability π(s). Returns ℓ(s).

- step: executes an action a ∈ A: the current state s is updated s′ with
probability τa(s)(s

′). Returns ℓ(s′).
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Throughout the learning process, the teacher will employ these two operations to
generate a collection of traces, denoted as T. With the use of only these two oper-
ations and T, the teacher can respond to the learner’s queries.

In L∗
MDP , the teacher answers four types of queries:

- frequency query (fq): given a trace o ∈ Tracesfin and a action a returns the
frequency (in T) of getting ℓ by executing a after observing o, for any label
ℓ. Therefore, fq(o · a) is a function fq(o · a) : L 7→ [0, 1]

- complete query (cq): given a finite trace o and an action a, returns true
if sufficient information is available in T to estimate an output distribution
fq(o · a); returns false otherwise. Hence, cq : Tracesfin ·A 7→ B.

- refine query (rq): instructs the teacher to improve its understanding of the
SUL by specifically testing it with rarely encountered samples. Traces sam-
pled through rq process are incorporated into the existing knowledge set T,
thereby enhancing the accuracy of future probability estimations.

- equivalence query (eq): given a hypothesis M, the eq function conducts tests
to determine the output-distribution equivalence between the SUL and M. It
returns a counterexample from TracesMfin that demonstrates non-equivalence,
or it returns none if no counterexample is found. Similar to the approach
in active automata learning, we approximate equivalence queries through
testing [60]. As a result, if no counterexample is detected, the approximate
equivalence queries return none instead of yes.

Using these four queries, the learner is able to approximate the MDP underlying
the SUL. L∗

MDP keeps a record of every potential state, denoted by finite traces
that lead to them. The fqs serve the purpose of approximating transition proba-
bilities. The cqs play a role in assessing if there’s enough information for a given
state. If the conditions are met for a pair of states, it scrutinises whether these
two states are statistically identical based on estimated transition probabilities and
subsequently merges them. Once all hypothesis states are constructed (according
to cqs) and no further merges are possible, an eq is executed. If no counterexample
emerges, the algorithm concludes; otherwise, it employs the counterexample and
additional refinement queries rqs to identify potential new states, thereby restart-
ing the entire process. A detailed description of the algorithm is given in [59].

As State-merging methods, L∗
MDP output models are necessary deterministic,

and the user cannot decide a priori the size of the output model. Like Alergia,
L∗
MDP converges to the SUL when the number of samples the teacher bases its

answers from (i.e., T) converges to infinity.
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Chapter 4

Tools

In the previous Chapter, we showed how we can theoretically learn different
Markov models. In this Chapter, we present various software packages that enable
us to learn these models in practice.

This Chapter is divided in two Sections: the first one is dedicated to AALpy,
a Python library implementing Alergia, IOAlergia and L∗

MDP , and the second one
is dedicated to several other softwares that are worth mentioning.

4.1 AALpy

AALpy, for Active Automata Learning, is a Python library that supports a
variety of formalisms, as deterministic finite automata, Mealy machine, MDPs and
MCs to name a few [61]. AALpy is developed and maintained by the DES-Lab
at Graz University of Technology (Austria). Version 1.0 was released in April
2021, and since then AALpy is updated roughly five times a year. The tool paper
describing AALpy got accepted in 2022 [61]. Here, we give an overview of AALpy.
A deeper analysis of its performance can be found in Section 7.5.4.

Features AALpy offers 9 learning algorithms for 8 different formalisms, sum-
marised in table 4.1. Most of them are non-stochastic models, which is out of our
scope. Our focus will be on stochastic models and their learning algorithms.

from aalpy.learning_algs import run_Alergia
type(training_set) # list
output = run_Alergia(training_set , eps=0.1, automaton_type=’mc’)
type(output) # aalpy.MarkovChain

Figure 4.1 – Simple execution of AALpy to learn an MC using Alergia.
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Model formalisms Learning algorithms
DFAs [7] L∗[33]

Mealy Machines [62] KV [63]
Moore Machine [62] RPNI [64]

ONFSMs [65] L∗
ONFSM [65]

Abstracted ONFSMs [66] L∗
ONFSM [66]

MCs Alergia [46, 47]
MDPs L∗

MDP [67], IOAlergia [49, 68]
SMM [67] L∗

SMM [67]

Table 4.1 – Formalisms and algorithms supported by AALpy

Applications. Despite it is has been recently released, AALpy has been used in
several contexts [61, 69].
Notably, in [69], the authors propose a general framework to learn a behavioural
model of the Bluetooth Low Energy (BLE) protocol implemented by a physical
device. Using this framework, they learn a behavioural model of the BLE protocol
implemented in five physical devices. Differences in the five implementations were
found, thereby indicating the viability of employing automata learning for the
purpose of black-box device fingerprinting.

Strengths. The first and main strength of AALpy is its comprehensiveness:
AALpy supports a wide variety of models which makes it useful in a wide variety
of environments.
Additionally, AALpy has a modular design and can therefore be easily extended
to other model formalisms or learning algorithms.
Lastly, the accessibility and usability of AALpy are significantly enriched through
its comprehensive documentation and numerous illustrative examples, each show-
casing the various functionalities offered by the library. These features facilitate a
more user-friendly experience, enabling users to effectively harness the capabilities
of AALpy for their specific needs.

Weaknesses. As shown in the Introduction, the application of Markov mod-
els is predominantly driven by the necessity to model check the employed mod-
els. However, it is worth noting that the sole existing compatibility between
AALpy and a model checker resides in the mdp_2_prism_format function.
Therefore, AALpyis not interoperable with Stormpy , it cannot translate other
models to Prism , and it does not support models in the Prism format.

4.2 Others
GHMM. The General Hidden Markov Model library (GHMM) is a C library,
with a Python interface, that implements data structures and algorithms for HMMs
analysis [70]. GHMM supports HMMs and numerous of its extensions, such as
GoHMMs. Sadly, GHMM is not maintain anymore. One consequence of this
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is that GHMM is only compatible with Python 2.7, whose end-of-life was made
official in December 2020, making it hardly usable today. However, the base code
is still available (in C). Additionally, ‘GHMM is utterly lacking in documentation’,
as we can read on its website.

hmmlearn. hmmlearn is a widely utilised Python library that implements HMMs
along with various extensions and the associated BW algorithms. In particular,
hmmlearn supports HMM and GoHMM. The package includes a documentation
with few examples. However, it should be noted that hmmlearn has not undergone
peer review. A brief performance comparison between hmmlearn and Jajapy on
learning of HMMs is provided in Section 7.5.3.

4.3 Conclusion
Apart from AALpy, there exists no tool that (i) performs the desired task, i.e. it

implements at least one of the algorithms described previously, (ii) is peer-reviewed,
and (iii) is still easily and widely usable today. For these reasons, we consider in this
thesis AALpyas the current state-of-the-art tool for learning stochastic models.
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Part II

Contributions
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Foreword

This thesis improves the state of the art in stochastic model learning in three
ways.

An active version of the BW algorithm for MDPs. This version actively
learns MDPs by sampling new traces which are the most informative w.r.t. the cur-
rent hypothesis. This approach significantly reduces the number of traces required
to obtain accurate models, given that we can interact with the SUL. The paper
‘Active Learning of Markov Decision Processes using Baum-Welch algorithm’, pre-
sented at the ICMLA’21 [71], introduced this version of the BW algorithm.

A learning algorithm for synchronous compositions of CTMCs. It is very
common to represent a system as a synchronous composition of CTMCs. This type
of representation is more intuitive and compact. In practice, the Prism language
[12] is commonly used for this purpose. However, it is difficult to learn the model
resulting from such a composition: firstly, because of the explosion in the number
of states, and secondly, because the transitions rates are algebraic compositions of
the rates of the compound models.
We propose an algorithm for learning synchronous compositions of CTMCs. Our
algorithm is based on an optimisation principle known as the MM algorithm. Since
the BW algorithm is an application of the EM algorithm itself, being only an
instance of MM, we cannot say that our algorithm is a variant of the BW algorithm.
The paper ‘An MM algorithm to Estimate Parameters in Continuous-time Markov
Chains’, presented at the QEST’23 [72], introduced this algorithm.

A novel library for stochastic model learning. We have developped Jajapy,
a Python library that implements a wide range of machine learning algorithms for
different families of Markov models and being compatible with the model checkers
Storm and Prism. This library makes it easier to experiment with different model
architectures and methodologies. Markov models having applications in a wide
range of fields beyond machine learning, including finance, biology, speech recog-
nition, natural language processing, and more, Jajapy could facilitate research
in these diverse domains by providing tools to learn Markov models. Finally, its
compatibility with model checkers is a valuable feature, especially for safety-critical
applications where correctness and reliability are paramount.
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The three following Chapters present these three contributions brought by this
thesis. Each of them is an adapted version of the original paper introducing these
contributions ([71] for the first Chapter, [72] for the second one and [73] for the
latter). Notations and vocabulary have been adapted to standardise the final doc-
ument. Previously defined concepts have been shortened to avoid redundancy.



Chapter 5

Active Learning of Markov
Decision Processes using
Baum-Welch algorithm

This Chapter revisits and adapts the classic BW algorithm for learning MDPs.
We present a model-based active learning sampling strategy that chooses examples
which are most informative w.r.t. the current model hypothesis. We empirically
compare our approach with state-of-the-art tools and demonstrate that the pro-
posed active learning procedure can significantly reduce the number of observations
required to obtain accurate models.

5.1 Introduction

Learning MDPs typically requires more traces as the number of model param-
eters grows (i.e., transition probabilities to estimate) with the number of actions.
While the number of parameters is equal to s2 for an MC (with s the number
of states), this value is equal to s2 · a for an MDP (with a the number of ac-
tions). To address this issue, we employ active learning. Rather than collecting
data samples at random, we steer the sampling of new traces aiming at uncovering
unobserved behaviours, thus improving the accuracy of the current model hypothe-
sis. In this line, we propose to learn an initial hypothesis from a relatively small set
of traces sampled at random. Then, for each state in the hypothesis, we compute
the expected number of times each action has been chosen from that state. This
information is used to devise an observation-based scheduler aimed at restoring
balance in the count of actions performed from each hidden state. This helps the
collected data set to represent a wider spectrum of the behaviours of the SUL.

Experiments show that our active learning procedure can significantly reduce
the number of traces required to obtain accurate models, achieving a faster con-
vergence rate than that observed when employing uniform schedulers.

49
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Other Related Work An influential active automata learning technique is An-
gluin’s L∗ algorithm [33] for learning regular languages, which inspired a number
of extensions better suited for modelling reactive systems [57, 60, 74]. In this line
of research, Tappler et al. [59] proposed an L∗-based technique for learning (de-
terministic) MDPs. The method iteratively refines the current hypothesis until
the teacher cannot provide a counterexample sequence. For each refinement step
a predefined amount of new traces is collected. In contrast to our proposal, new
traces are sampled targeting a subset of states that are marked as rare.

Other related work include model-based learning techniques for partially observ-
able MDPs (e.g.,[75]). These techniques aim at learning how to act in an unknown
partially observable domain taking actions based on an approximate model of the
domain. Typically, they learn only a portion of the real model that is sufficient
to optimise the strategy, leaving unnecessary parts of the system unexplored. In
contrast, we aim at learning the whole model and be able to analyse it. This
expanded knowledge comes at the cost of increased learning complexity and data
requirements.

Synopsis Section 5.2 summarises preliminary concepts and notation; Section 5.3
describes the proposed active learning strategies. Then, Section 5.4 contains an
empirical evaluation of our the active learning strategies presented in this Chapter,
and Section 5.5 discusses the results and outlines future research directions.

5.2 Preliminaries

In this Chapter, we define observation-based scheduler, the family of schedulers
that choose the next action according to the trace observed so far, instead of the
path. Formally:

Definition 5.2.1 (observation-based scheduler). A scheduler σ is observation-
based if for all ρ, ρ′ ∈ Pathsfin such that |ρ| = |ρ′|, O|ρ| = O|ρ′| implies σ(ρ) =
σ(ρ′).

Therefore, we usually define, as a misnomer, observation-based schedulers are
as function σ : Tracesfin 7→ D(S), while, since they are scheduler, they should be
define as functions from Pathsfin to D(S).

We also define memoryless scheduler, following the classic definition [7], as a
scheduler that chooses the next action according to the last state only. Thus,
memoryless schedulers are not observation-based.

Definition 5.2.2 (observation-based scheduler). A scheduler σ is memoryless-
based if for all ρ, ρ′ ∈ Pathsfin, X|ρ| = X|ρ′| implies σ(ρ) = σ(ρ′).

Memoryless schedulers are often defined as function σ : S 7→ D(S) as a mis-
nomer.
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5.3 The Active-BW algorithm
The BW algorithm is a passive learning method: it assumes no interaction with

the system, which has to be learned from a fixed set of observations. In situations
where one can actively query the system to collect training data, one can think of
employing querying strategies to produce new examples that are most informative
w.r.t. the systems behaviour. In this way, one can learn qualitatively better models
compared to the passive learning approach while collecting a considerably smaller
amount of traces.
Let H = ⟨S,L, ℓ, A, {τa}a∈A, π⟩ and O be respectively the current hypothesis and
the current training set. The active learning procedure iteratively updates H and
O by performing the following steps:

1. devise an observation-based scheduler from O and H;
2. sample new observation sequences using the above mentioned scheduler, adding

them to O; and
3. update H based on the new data using BW.

These steps are repeated until a given sampling budget has been exceeded or no
further scrutiny of the system is deemed necessary. Hereafter, we detail how each
step is implemented.
We start by computing the matrix M = (msa)s∈S,a∈A where msa is the expected
number of times the action a has been chosen from s, that is computed as follows

msa =
∑

o∈O
∑|o|

t=1[[at = a]] γo(s, t) , (5.1)

then, we define the memoryless scheduler σM : S → D(A) as

σM (s)(a) =

∑
a′∈A msa′ −msa∑

a′′∈A

∑
a′∈A msa′ −msa′′

(5.2)

=

∑
a′∈A msa′ −msa

(|A| − 1).
∑

a′∈A msa′
(5.3)

Intuitively, given the system is in state s ∈ S, the above scheduler chooses an action
a ∈ A with a probability that is opposite to that observed in O. Since the current
state of the system is hidden, when sampling we use a belief state instead. This
corresponds to employ the observation-based scheduler σ∗

M defined as follows. For
an observation o = ℓ0a0 · · · ℓT−1aT−1ℓT ∈ Tracesfin and an action a ∈ A,

σ∗
M (o)(a) =

∑
s∈S PrH[XT = s|OT = o] · σM (s)(a)

=
∑

s∈S γo(s, T )σM (s)(a) . (5.4)

with γ defined in (3.3). Intuitively, the above scheduler works as follows. Having ob-
served o, we believe system is in state s ∈ S with probability PrH[XT = s|OT = o];
consequently, σ∗

M chooses the action a ∈ A with probability σM (s)(a).

The algorithm in Fig. 5.1 describes how we actively sample an observation
sequence of length T ∈ N emitted by a partially observable MDP M by using the
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ActiveSampling(M,H = ⟨S, ι, {τa}a∈A⟩,O, T ∈ N)
1 Initialise M = (msa)s∈S,a∈A as Eq. (5.1)
2 ℓ1 = Init(M) // initialise the system
3 for each s ∈ S
4 α(s, 0) = π(s)
5 for t = 1 to T − 1

6 Sample at ∈ A according to
∑

s∈S
α(s,t)∑

s′∈S α(s′,t)σM (s)

7 ℓt+1 = Observe-Label(M, at)
8 for each s ∈ S
9 msat

= msat
+ α(s, t)/

∑
s′∈S α(s′, t)

10 α(s, t+ 1) =
∑

s′∈S τat
(s′)(ℓt+1, s) · α(s′, t)

11 // Return the entire observation sequence
12 return (ℓ1, a1) · · · (ℓT−1, aT−1)ℓT

Figure 5.1 – Active Sampling Strategy

scheduler σ∗
M of Eq. (5.4).

ActiveSampling keeps track and updates at each step the matrix M and
the current forward distribution α(·, t) ∈ D(S). These are respectively used to
compute the current belief state γ(·, t) ∈ D(S) (cf. Eq. (3.3)) and the memoryless
scheduler σM (cf. Eq. (5.3)), which are used in line 6. After observing an initial
label ℓ0 from the system M, the initial forward distribution α(·, 0) is computed
(lines 3–4). Then, for each time-step t from 0 to T −1, an action at ∈ A is sampled
according to σ∗

M , and used to observe the next label ℓt+1 emitted by M (line 7).
The forward distribution α(·, t + 1) and the matrix M are then updated (line 8–
10) before moving to the next time-step. The update of the forward probabilities
follows Eq. (3.5), while the update of the column vector Mat follows Eq. (5.1).

5.4 Experimental results
In this section we present an empirical analysis of the active sampling strategy.

We will first compare the Active-BW algorithm to the classic BW one, then we
compare it to L∗

MDP .

5.4.1 Active-BW vs BW

The models. We will use as SUL two variants of the grid world model introduced
in [59] (cf. Figure 5.2). A robot is moving in this grid, starting from the top left.
The actions are the four directions (nord, east, south, and west) and the observed
labels represent different terrains. Depending on target terrain the robot may slip
and change direction, e.g. move south west instead of south: the probability that
the robot slips is respectively 0.0, 0.2, 0.25 and 0.4 if the target terrain is concrete
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(a) A 3x3 deterministic grid world (b) A 4x4 non-deterministic grid world

Figure 5.2 – Grid world models.

(C), grass (G), sand (S) and mud (M). When the robot reaches the goal cell (the
bottom right one), it stays there forever, observing GOAL. By construction, the 3x3
grid world (cf. Figure 5.2a) is deterministic while the 4x4 grid is non-deterministic
(cf. Figure 5.2b).

The experiment protocol. We compare the active procedure against the pas-
sive one and show how the learning accuracy of the former compares to the latter
with the size of the training set. The experiments have been performed as follows.
Starting from the same initial hypothesis (learned with BW from a small data set)
we incrementally grew the data set bigger respectively using the active sampling
strategy and a sampling strategy based on a memoryless uniformly distributed se-
lection of actions.

For both models the initial hypothesis was learned from a data set of 50 traces of
length 20; then we performed 20 active learning iterations by sampling new traces
of length 20. In the following, we consistently employed a trace length of 20. This
choice stems from utilising a memoryless uniformly distributed selection of actions,
ensuring that the probability of reaching each state of the model within 20 time
steps is at least 0.5. In general, this is a reasonable rule of thumb for determining
the length of traces used in training and testing the model.

Results. Fig. 5.3 shows the graph of the mean loglikelihood distance with a test
set containing 10,000 traces of length 20 paired with standard error bars measured
from a number of re-run of the experiment relative to test set for the two models.
In our experience, using 10,000 traces of this length is sufficient to achieve accurate
loglikelihood distances while maintaining low computation times.
Overall, the graphs in Fig. 5.3 show that the active learning approach provides
better approximations than the passive approach. Another interpretation is that
the proposed active learning is able to obtain the same level of accuracy than the
passive learning approach with a smaller data set. Notably, the graphs show also
that the standard error for the active learning method is smaller than the one mea-
sured for the passive learning approach. This indicates that our active learning
approach is more stable than the passive approach.
As anticipated, the loglikelihood distance in the deterministic 3x3 grid world is
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(a) 3x3 grid world (b) 4x4 grid world

Figure 5.3 – Comparison between the passive learning and active learning proce-
dures: loglikelihood distance relative to a test set of 10, 000 traces of length 20.

smaller than in the larger and nondeterministic world. In both cases, we were
learning from the same amount of data, but the larger world necessitates the esti-
mation of more transition probabilities than the smaller one.

5.4.2 Active BW vs L∗
MDP

We conclude the experiment section by comparing our active learning method
against the L∗

MDP algorithm [59] for learning deterministic MDPs. We recall that
L∗
MDP actively refines its current hypothesis as long as the teacher can provide

new counterexamples. The implementation of the teacher in the L∗
MDP algorithm

is done both by checking the conformance and the structure of the hypothesis w.r.t
the data set.

The models. We use the same two models for this experiment (the two grid world
depicted in Fig. 5.2). The reason is that the 3x3 grid wold model is deterministic,
and the other is not. However, we know that the models resulting from an execution
of L∗

MDP can only be deterministic (see Section 3.3). It will therefore be interesting
to compare how both L∗

MDP and Active-BW behave when SUL is deterministic and
when it is not.

The experiment protocol. For this experiment, we use the L∗
MDP implemen-

tation of AALpy, a Python learning library for automata [61], and Jajapy (see
Chapter 7) for Active-BW.
We start by running L∗

MDP for 200 learning iterations on the 3x3 grid world, and
for 100 learning iterations on the 4x4 grid.
Then, we run Active-BW on 199 active iterations (plus the initial classic BW one)
for the 3x3 grid, and on 99 active iterations for the 4x4 grid, such that the total
number of labels used by the two algorithms is as close as possible. In practice, if
N is the total number of labels used by L∗

MDP , we use, for Active-BW, an original
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true L∗
MDP Active-BW

overall # of labels - 69, 872 69, 860

# of traces - 15, 287 3, 493

# of states 17 17 17

loglikelihood distance 0.0 0.724 0.356
Prmax(F

<4(goal)) 0.336 0.347 0.325

Prmax(¬G U<4(goal)) 0.072 0.077 0.066

Table 5.1 – L∗
MDP vs Active-BW on the 3x3 grid world model.

true L∗
MDP Active-BW

overall # of labels - 818, 414 818, 400

# of traces - 132, 074 40, 920

# of states 27 44 27
loglikelihood distance 0.0 0.144 0.731

Prmax(F
<7(goal)) 0.351 0.340 0.360

Prmax(F
<12(goal)) 1.0 0.996 1.0

Prmax(¬(C ∨W) U<7(goal)) 0.326 0.312 0.326

Table 5.2 – L∗
MDP vs Active-BW on the 4x4 grid world model.

training set containing 1
3
N
20 traces of length 20, and for each of the 199 active iter-

ations, we sample using the active learning strategy 2
3

N
20×199 traces of length 20.

Finally, the loglikelihood distance is computed for a test set containing 10,000
traces of length 20.

Results. On the deterministic 3x3 grid, similarities arise between the L∗
MDP and

Active-BW output models (refer to Table 5.1). Notably, while the Active-BW
model demonstrates a smaller loglikelihood distance, the L∗

MDP model garners
slightly better outcomes in terms of the evaluated properties.
However, the two algorithms manifest disparate performances when shifting focus
to the non-deterministic 4x4 grid (see Table 5.2). Specifically, L∗

MDP learned a
deterministic approximation of the SUL, resulting in a model of nearly twice the
magnitude. On one hand, the Active-BW output model closely aligns with the true
model across all the checked properties in this experiment. On the other hand, the
L∗
MDP output model is closer to the SUL in terms of loglikelihood distance.

This divergence could be attributed to the fact that Active-BW is not sensitive to
structural counterexamples as the L∗

MDP algorithm is. Indeed, when the algorithm
encounters a new observation which has probability zero of being generated by the
current hypothesis, also the next hypothesis won’t be able to generate it. This
aspect in particular needs particular attention when learning deterministic models
or in general when some observation traces can be emitted only by a single path
in the hypothesis model.
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5.5 Conclusions and Future Work
In this Chapter we revisited the classic Baum-Welch algorithm for learning

models parameters of nondeterministic MDPs and Markov chains from a set of
traces. Compared with state-of-the-art (passive) learning algorithms like Alergia
and IOAlergia, the BW procedure has a higher run-time complexity. However,
experiments show that BW is able to learn models that reflect more accurately the
behaviours of the observed system. This aspect is more pronounced when learning
MDPs from a relatively small set of observations.

Learning model parameters for MDPs typically requires large data sets, espe-
cially when the system under learning exhibits a high degree of nondeterminism. To
cope with this issue, we proposed a model-based active learning sampling strategy
which has three main advantages: (a) it is simple to implement and can be seam-
lessly integrated into small low power embedded systems; (b) it does not introduce
additional overhead with respect to the model update procedure; (c) it collects a
diverse and well-spread variety of observations, that better represent the nonde-
terministic behaviours of the system under learning. Experimental results show
that the active procedure strategy outperforms the corresponding passive learning
variant in terms of accuracy relative to the size of the data set. This makes our
active learning procedure an effective solution when one has the possibility to have
limited amount of interactions with the system under learning.

A weakness of our active learning procedure is the fact that is it not sensitive
to structural counterexamples. As future work we intend address this issue.

Another interesting research direction consists in generalising the active learning
procedure for learning model parameters of stochastic two-player games, allowing
one to learn systems that operate in an unknown (adversarial) environment by
actively interacting with both players.



Chapter 6

MM Algorithms to Estimate
Parameters in Continuous-time
Markov Chains

In this Chapter, we address the problem of estimating parameter values of
CTMCs expressed as Prism models from a number of partially-observable execu-
tions which might possibly miss some dwell time measurements. The semantics of
the model is expressed as a parametric CTMC (pCTMC), i.e., CTMC where tran-
sition rates are polynomial functions over a set of parameters. Then, building on
a theory of algorithms known by the initials MM, for minorisation–maximisation,
we present an iterative maximum likelihood estimation algorithm for pCTMCs.

We present an experimental evaluation of the proposed technique on a number
of CTMCs from the quantitative verification benchmark set. We conclude by il-
lustrating the use of our technique in a case study: the analysis of the spread of
COVID-19 in presence of lockdown countermeasures.

6.1 Introduction

A continuous-time Markov chain (CTMC) is a model of a dynamical system
that, upon entering some state, remains in that state for a random real-valued
amount of time —called the dwell time or sojourn time— and then transitions
probabilistically to another state. CTMCs are popular models in performance and
dependability analysis. They have wide application and constitute the underly-
ing semantics for real-time probabilistic systems such as queuing networks [76],
stochastic process algebras [77], and calculi for systems biology [78, 79].

Model checking tools such as Prism [12] and Storm [13] provide a number of
powerful analysis techniques for CTMCs. Both tools accept models written in the
Prism language, a state-based language based on [80] that supports compositionnal
design via a uniform treatment of synchronous and asynchronous components.

57
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ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module SIR
s : [0..SIZE] init 99936;
i : [0..SIZE] init 48;
r : [0..SIZE] init 16;

[ ] i>0 & i<SIZE & s>0 !
beta ⇤ s ⇤ i ⇤ plock/SIZE : (s0=s � 1)&(i0=i + 1);

[ ] i>0 & r<SIZE !
gamma ⇤ i ⇤ plock : (i0=i � 1)&(r0=r + 1);

endmodule

ctmc
// SIR model paramaters
const double beta; const double gamma;
const double plock;
const int SIZE = 100000; // population size

module Susceptible
s : [0..SIZE] init 99936;
[infection] s>0 ! s : (s0=s � 1);
endmodule

module Infected
i : [0..SIZE] init 48;
[infection] i>0 & i<SIZE ! i : (i0=i + 1);
[recovery] i>0 ! i : (i0=i � 1);
endmodule

module Recovered
r : [0..SIZE] init 16;
[recovery] r<SIZE ! 1 : (r0=r + 1);
endmodule

module Rates
[infection] true ! beta ⇤ plock/SIZE : true;
[recovery] true ! gamma ⇤ plock : true;
endmodule

Fig. 1: (Left) SIR model with lockdown from [28], (Right) Semantically equiva-
lent formulation of the model to the left where di↵erent individuals are modeled
as distinct modules interacting with each other via synchronization.

Model checking tools such as Prism [23] and Storm [9] provide access to a
number of powerful analysis techniques for CTMCs. Both tools accept models
written in the Prism language, a state-based language based on [1] that repre-
sents synchronous and asynchronous components in a uniform framework that
supports compositional design. For example, consider the Prism model depicted
in Fig. 1 (left) implementing a variant of the Susceptible-Infected-Recovered
(SIR) model proposed in [28] to describe the spread of disease in presence of
lockdown restrictions.

The model distinguishes between three types of individuals: susceptible, in-
fected, and recovered respectively associated with the state variables s, i, and r.
Susceptible individuals become infected through contact with another infected
person and can recover without outside interference. The SIR model is paramet-
ric in beta, gamma, and plock. beta is the infection coe�cient, describing the
probability of infection after the contact of a susceptible individual with an in-
fected one; gamma is the recovery coe�cient, describing the rate of recovery of an
infected individual (in other words, 1/gamma is the time one individual requires
to recover); and plock 2 [0, 1] is used to scale down the infection coe�cient
modeling restrictions to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly de-
pendent on the parameter values used, as they govern the timing and probability
of events of the CTMC describing its semantics. However, in some application
domains, parameter values have to be empirically evaluated from a number of

Figure 6.1 – (Left) SIR model with lockdown from [81], (Right) Semantically equiv-
alent formulation of the model to the left where different individuals are modelled
as distinct modules interacting with each other via synchronisation.

For example, consider the Prism model depicted in Fig. 6.1 (left) implement-
ing a variant of the Susceptible-Infected-Recovered (SIR) model proposed in [81] to
describe the spread of disease in presence of lockdown restrictions. The model dis-
tinguishes between three types of individuals: susceptible, infected, and recovered
respectively associated with the state variables s, i, and r. Susceptible individu-
als become infected through contact with another infected person and can recover
without outside interference. The SIR model is parametric in beta, gamma, and
plock. beta is the infection coefficient, describing the probability of infection after
the contact of a susceptible individual with an infected one; gamma is the recovery
coefficient, describing the rate of recovery of an infected individual (in other words,
1/gamma is the time one individual requires to recover); and plock ∈ [0, 1] is used
to scale down the infection coefficient modelling restrictions to reduce the spread
of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly de-
pendent on the parameter values used, as they govern the timing and probability
of events of the CTMC describing its semantics. However, in some application
domains, parameter values have to be empirically evaluated from a number of
partially-observable executions of the model. A paradigmatic example is the mod-
elling pipeline described in [81], where the parameters of the SIR model in Fig. 6.1
(left) are estimated based on a definition of the model as ODEs, and later used in
an approximation of the original SIR model designed to reduce the state space of
the SIR model in Fig. 6.1 (left). Such modelling pipelines require high technical
skills, are error-prone, and are time-consuming, thus limiting the applicability and
the user base of model checking tools.
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In this work, we address the problem of estimating parameter values of CTMCs
expressed as Prism models from a number of partially-observable executions. The
expressive power of the Prism language brings two technical challenges: (i) the
classic state-space explosion problem due to modular specification, and (ii) the fact
that the transition rates of the CTMCs result from the algebraic composition of
the rates of different (parallel) modules which are themselves defined as arithmetic
expressions over the parameters (cf. Fig. 6.1). We address the second aspect of the
problem by considering a class of parametric CTMCs (pCTMCs) [82, 83], which
are CTMCs where transition rates are polynomial functions over a fixed set of
parameters. In this respect, pCTMCs have the advantage to cover a rich subclass
of Prism models and to be closed under the operation of parallel composition
implemented by the Prism language.

Following the standard approach, we pursue the maximum likelihood estimate
(MLE), i.e., we look for the parameter values that achieve the maximum joint
likelihood of the observed execution sequences. However, given the non-convex
nature of the likelihood surface, computing the global maximum that defines the
MLE is computationally intractable [84].

To deal with this issue we employ a theoretical iterative optimisation principle
known as MM algorithm [22, 23]. The well-known EM algorithm [21] is an instance
of MM optimisation framework and is a versatile tool for constructing optimisation
algorithms. MM algorithms are typically easy to design, numerically stable, and in
some cases amenable to accelerations [85, 86]. The versatility of the MM principle
consists in the fact that is built upon a simple theory of inequalities, allowing one
to derive optimisation procedures. The MM principle is useful to derive iterative
procedures for maximum likelihood estimation which increase the likelihood at each
iteration and converge to some local optimum.

The main technical contribution of this Chapter consists in devising a novel
iterative maximum likelihood estimation algorithm for pCTMCs. Crucially, our
technique is robust to missing data. In contrast with [48, 87], where state labels
and dwell times are assumed to be observable at each step of the observations while
only state variables are hidden, our estimation procedure accepts observations to
have information to be missing at some steps.

Notably, when state labels and dwell times are observable and only state vari-
ables are hidden, our learning procedure results in a generalisation of the Baum-
Welch algorithm [26] to pCTMCs.

We demonstrate the effectiveness of our estimation procedure on a case study
taken from [81] and show that our technique can be used to simplify modelling
pipelines that involve a number of modifications of the model —possibly introduc-
ing approximations— and the re-estimation of its parameters.

Related Work Literature on parameter estimation for CTMCs follows two ap-
proaches. The first approach is based on Bayesian inference and assumes a proba-
bility distribution over parameters which in turn produces an uncertain CTMC [88,
89]. In this line of work, Georgoulas et al. [88, 90] proposed ProPPA, a stochas-
tic process algebra with inference capabilities. Using probabilistic inference, the
ProPPA model is combined with the observations to derive updated probability
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distributions over rates. Uncertain pCTMCs require dedicated model checking
techniques [89].

The second approach aims at estimating parameter values producing concrete
CTMCs via maximum likelihood estimation. In this line, Geisweiller proposed
EMPEPA [87], an expectation-maximisation algorithm that estimates the rate val-
ues inside a PEPA model. Wei et al. [91] learn the infinitesimal generator of a
continuous-time hidden Markov model by first employing the Baum-Welch algo-
rithm [26] to estimate the transition probability matrix of its (embedded) hidden
Markov model from a set of periodic observations.

A large body of literature studies parameter estimation for stochastic reaction
networks (SRN) (cf. [92, 93] and references therein). According to Gillespie’s theory
of stochastic chemical kinetics, SRNs can be represented using CTMCs with states
in Nd. An SRN describes the dynamics of a population of d chemical species by
means of a number of chemical reaction rules. Notably, the SIR model in Fig. 6.1
was encoded from an SRN. The parameter estimation problem for SRNs focuses on
estimating the rate values associated with each reaction rule. In this respect, (i) An-
dreychenko et al. [94] employs numerical approximations of the likelihood function
(and its derivatives) w.r.t. reaction rate constants by dynamically truncating the
state space in an on-the-fly fashion, considering only those states that significantly
contribute to the likelihood in a given time interval, while (ii) Bayer et al. [95] com-
bines the Monte Carlo version of the expectation-maximisation algorithm [96] with
the forward-reverse technique developed in [97] to efficiently simulate SRN bridges
conditional on the observed data. Compared with our method, the estimation al-
gorithms of [94, 95] scale better in the number of species and population size, but
they assume to observe all the coordinates of the state. In our opinion, this limits
the applicability of their methods to scenarios where states are partially observed.
Such an example is the case study of Section 6.6 where the available data set was
only reporting the number of infected individuals (i.e., two components out of three
were not observable). Daigle et al. [98] developed an efficient version of the Monte
Carlo expectation-maximisation technique which employs modified cross-entropy
methods to account for rare events. Notably, their technique is executable also on
data sets with missing species but, as for our algorithm, such flexibility comes at
the expense of efficiency: the algorithm of [98] took 8.7 days for the parameter es-
timation on an SRN describing an auto-regulatory gene network with five species,
while the method of [95] took 2 days 1.

In contrast with our work, TAlergia (see Section 3.2.2) does not perform param-
eter estimation over structured models, but learns an unstructured CTMC. Hence,
it suits better for learning a single component CTMC when no assumption can be
made on the structure or the size of the model.

Another related line of research is parameter synthesis of Markov models [99].
In particular, [100, 83] consider parametric CTMCs, but are generally restricted to
a few parameters. In contrast with our work, parameter synthesis revolves around
the problem of finding (some or all) parameter instantiations of the model that
satisfy a given logical specification.

1. Details on the experiments can be found in the respective papers.
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6.2 Preliminaries and Notation

Remark 6.2.1. A CTMC can be equivalently described as a tuple ⟨S,L, ℓ,→, π⟩
where → ⊆ S × R≥0 × S is a transition relation. The transition rate function R

induced by → is obtained as, R(s, s′) =
∑{r | s r−→ s′} for arbitrary s, s′ ∈ S.

The MM Algorithm. The MM algorithm is an iterative optimisation method.
The acronym MM has a double interpretation: in minimisation problems, the
first M stands for majorise and the second for minimise; dually, in maximisation
problems, the first M stands for minorise and the second for maximise. In this
paper we only focus on maximising an objective function f(x), hence we tailor
the presentation of the general principles of the MM framework to maximisation
problems. The MM algorithm is based on the concept of surrogate function. A
surrogate function g(x | xm) is said to minorise a function f(x) at xm if

f(xm) = g(xm | xm) , (6.1)
f(x) ≥ g(x | xm) for all x ̸= xm . (6.2)

In the MM optimisation framework, we maximise the surrogate minorising function
g(x | xm) rather than the actual function f(x). If xm+1 denotes the maximum of
the surrogate g(x | xm), then the next iterate xm+1 forces f(x) uphill. Indeed, the
inequalities

f(xm) = g(xm | xm) ≤ g(xm+1 | xm) ≤ f(xm+1)

follow directly from the definition of xm+1 and the axioms (6.1) and (6.2).
Because piecemeal composition of minorisation works well, the derivations of

surrogate functions are typically achieved by applying basic minorisations to strate-
gic parts of the objective function, leaving other parts untouched. Finally, another
aspect that can simplify the derivation of MM algorithms comes from the fact that
the iterative maximisation procedure hinges on finding xm+1 = argmaxx g(x | xm).
Therefore, g(x | xm) can be replaced by any other surrogate function g′(x | xm)
satisfying argmaxx g(x | xm) = argmaxx g

′(x | xm) for all xm. This is for instance
the case when g(x | xm) and g′(x | xm) are equal up to some (irrelevant) constant
c, that is g(x | xm) = g′(x | xm) + c.

6.3 Parametric Continuous-time Markov chains

As mentioned in the introduction, the Prism language offers constructs for
the modular design of CTMCs within a uniform framework that represents syn-
chronous and asynchronous module interaction. For example, consider the Prism
models depicted in Fig. 6.1. The behaviour of each module is described by a set
of commands which take the form [action] guard → rate : update representing a
set of transitions of the module. The guard is a predicate over the state variables
in the model. The update and the rate describe a transition that the module can
make if the guard is true. The command optionally includes an action used to force
two or more modules to make transitions simultaneously (i.e., to synchronise). For
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example, in the model in Fig. 6.1 (right), in state (50, 20, 5) (i.e., s = 50, i = 20,
and r = 5), the model can move to state (49, 21, 5) by synchronising over the action
infection. The rate of this transition is equal to the product of the individual
rates of each module participating in an infection transition, which in this case
amounts to 0.01 · beta · plock. Commands that do not have an action represent
asynchronous transitions that can be taken independently (i.e., asynchronously)
from other modules.

By default, all modules are combined following standard parallel composition
in the sense of the parallel operator from Communicating Sequential Processes
algebra (CPS), that is, modules synchronise over all their common actions. The
Prism language offers also other CPS-based operators to specify the way in which
modules are composed in parallel.

Therefore, a parametric representation of a CTMC described by a Prism model
shall consider transition rate expressions which are closed under finite sums and
finite products: sums deal with commands with overlapping guards and updates,
while products take into account synchronisation. In line with [82, 83] we employ
parametric CTMCs (pCTMCs).

Let x = (x1, . . . , xn) be a vector of parameters. We write E for the set of
polynomial maps f : Rn

≥0 → R≥0 of the form f(x) =
∑m

i=1 bi
∏n

j=1 x
aij

j , where
bi ∈ R≥0 and aij ∈ N for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. E is a commutative
semiring satisfying the above-mentioned requests for transition rate expressions.

Definition 6.3.1. A pCTMC is a tuple P = ⟨S,L, ℓ, R, π⟩ where S, s0, and ℓ are
defined as for CTMCs, and R : S×S → E is a parametric transition rate function.

Intuitively, a pCTMC P = ⟨S,L, ℓ, R, π⟩ defines a family of CTMCs arising by
plugging in concrete values for the parameters x. Given a parameter evaluation
v ∈ Rn

≥0, we denote by P(v) the CTMC associated with v, and R(v) for its rate
transition function. Note that by construction R(v)(s, s′) ≥ 0 for all s, s′ ∈ S,
therefore P(v) is a proper CTMC.

As for CTMCs, parametric transitions rate functions can be equivalently de-
scribed by means of a transition relation → ⊆ S × E × S, where the parametric
transition rate from s to s′ is R(s, s′)(x) =

∑{f(x) | s f−→ s′}.
Example 6.3.1. Consider the model in Fig. 6.1 parametric in beta, gamma, and
plock. The semantics of this model is a pCTMC with states S = {(s, i, r) | s, i, r ∈
{0, . . . , 105}} and initial state (99936, 48, 16). For example, the initial state has
two outgoing transitions: one that goes to (99935, 49, 16) with rate 47.96928 ·beta ·
plock, and the other that goes to (99935, 48, 17) with rate 49 · gamma · plock.
Example 6.3.2. Consider the model in Fig. 6.2 with parameters mu1a, mu1b, mu2
and kappa. The semantics of this model is a parametric CTMC with states
S = {(sc, ph, sm) | sc, sm ∈ {0, . . . , 5}, ph ∈ {1, 2}} and initial state (0, 1, 0).
The initial state has one outgoing transitions that goes to (1, 1, 0) with rate lambda =
4 · c = 20.
State (1, 1, 0) has three outgoing transitions: one goes to (2, 1, 0) with rate lambda =
4 · c = 20, one to (1, 2, 0) with rate mu1a, and one to (1, 1, 1) with rate mu1b · 1.
Figure 6.3 is a representation of the Tandem queuing model with c = 1 where the
synchronous transitions are in red.
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ctmc
// Tandem Queuing Network [Hermanns, Meyer-Kayser & Siegle]
const int c = 5; // queue capacity
const double lambda = 4 ∗ c;
// model parameters
const double mu1a; const double mu1b; const double mu2; const double kappa;

module serverC
sc : [0..c] init 0;
ph : [1..2] init 1;

[ ] (sc<c) → lambda : (sc′=sc + 1);
[route] (sc>0) & (ph=1) → mu1b : (sc′=sc − 1);
[ ] (sc>0) & (ph=1) → mu1a : (ph′=2);
[route] (sc>0) & (ph=2) → mu2 : (ph′=1) & (sc′=sc − 1);

endmodule

module serverM
sm : [0..c] init 0;

[route] (sm<c) → 1 : (sm′=sm + 1);
[ ] (sm>0) → kappa : (sm′=sm − 1);

endmodule

Figure 6.2 – Prism model for the tandem queueing network from [101]
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Figure 6.3 – (Left) the two components of the Tandem queuing network with c=1
(Right) the pCTMC resulting from the synchronous composition of the two models.

One relevant aspect of the class of pCTMCs is the fact that it is closed under
parallel composition in the sense described above. This justifies the study of pa-
rameter estimation of Prism models from observed data via maximum likelihood
estimation for pCTMCs.
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6.4 Estimating Parameters from Partial Observa-
tions

In this section, we present an algorithm to estimate the parameters of a pCTMC
P from a collection of i.i.d. timed traces O. Notably, the algorithm is devised to be
robust to missing dwell time values. In this line, we consider partial observations
of the form ℓ0:n, t0:n−1 representing a finite sequence ℓ0t0 · · · tn−1ℓn of consecutive
dwell time values and atomic propositions observed during a random execution of
M. Here, as before, the dwell times ti that are missing are denoted as ti = ∅.

We follow a maximum likelihood approach: the parameters x are estimated to
maximise the joint likelihood l(P(x);O) =

∏
o∈O l(P(x); o) of the observed data.

When P and O are clear from the context, we write l(x) for the joint likelihood
and l(x; o) for the likelihood of the observation o.

According to the assumption that some dwell time values may be missing, we
recall that the likelihood of a partial observation o = ℓ0:n, t0:n−1 for a generic
CTMC M is

l(M; o) =
∑

ρ∈Paths(o)
ρ=s0t0...sn

π(s0)

n−1∏
i=0

R(si, si+1)

E(si)
·
∏

i∈T (ρ)

E(si)e
−E(si) ti

 . (6.3)

Our solution to the maximum likelihood estimation problem builds on the MM
optimisation framework [23, 22]. In this line, our algorithm starts with an initial
hypothesis x0 and iteratively improves the current hypothesis xm, in the sense
that the likelihood associated with the next hypothesis xm+1 enjoys the inequality
l(xm) ≤ l(xm+1). The procedure terminates when the improvement does not
exceed a fixed threshold ϵ, namely when l(xm)− l(xm−1) ≤ ϵ.

Before proceeding with the formulation of the surrogate function, we find it
convenient to introduce some notation. Let P = ⟨S,L, ℓ,→, π⟩, we write fω for
the rate function of a transition ω ∈ →, and write s → · for the set of transitions
departing from s ∈ S.

Without loss of generality, we assume that the rate function fω of a transition
is either a constant map, i.e., fω(x) = cω for some cω ≥ 0 or a map of the form
fω(x) = cω

∏n
i=1 x

aωi
i for some cω > 0 and aωi > 0 for some i ∈ {1, . . . , n}; we

write aω for
∑n

i=1 aωi. We denote by c−→ the subset of transitions with constant
rate function and x−→ for the remaining transitions.

To maximise l(x) we propose to employ an MM algorithm based on the following
surrogate function g(x|xm) =

∑n
i=1 g(xi|xm) where

g(xi|xm) =
∑

ω∈ x−→
ξωaωi lnxi −

∑
s

∑
ω∈s

x−→·

fω(xm)aωiγs
aω(xmi)aω

xaω
i . (6.4)

Here the coefficients γs and ξω are respectively defined as

γs =
∑

o∈O
∑|o|−1

i=0 γo(s, i)
(
[[ti ̸= ∅]]ti + [[ti = ∅]]Em(s)−1

)
(6.5)

ξω =
∑

o∈O
∑|o|−1

i=0 ξo(ω, i) (6.6)
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where γo(s, i) denotes the likelihood that having observed o on a random execution
of P(xm) the state Xi = s, and ξo(ω, i)

2 is the likelihood that for such random
execution the transition performed from state Xi is ω .

The following theorem states that the surrogate function g(x|xm) is a minoriser
of the loglikelihood relative to the observed dataset O.

Theorem 6.4.1. The surrogate function g(x|xm) minorises ln l(x) at xm up to
an irrelevant constant.

The proof of this Theorem can be found in Appendix B. By Theorem 6.4.1 and
the fact that the logarithm is an increasing function, we obtain that the parameter
valuation that achieves the maximum of g(x|xm) improves the current hypothesis
xm relative to likelihood function l(x).

Corollary 6.4.1. Let xm+1 = argmaxx g(x|xm), then l(xm) ≤ l(xm+1).

The surrogate function g(x|xm) is easier to maximise than l(x) because its
parameters are separated. Indeed, maximisation of g(x|xm) is done by point-wise
maximisation of each univariate function g(xi|xm). This has two main advantages:
first, it is easier to handle high-dimensional problems [22, 23]; second, one can
choose to fix the value of some parameters and perform the maximisation of g(x|xm)
only on the corresponding subexpressions g(xi|xm).

The maxima of g(xi|xm) are found among the non-negative roots 3 of the poly-
nomial function Pi : R → R

Pi(y) =
∑
s

∑
ω∈s

x−→

fω(xm)aωiγs
(xmi)aω

yaω −
∑

ω∈ x−→
ξωaωi (6.7)

Remark 6.4.1. There are some cases when 6.7 admits a closed-form solution. For
instance, when the parameter index i satisfies the property ∀ω ∈ x−→. aωi > 0 =⇒
aω = C for some constant C ∈ N, then maximisation of g(xi|xm) leads to the
following update

x(m+1)i =

[
(xmi)

C
∑

ω∈ x−→ ξωaωi∑
s

∑
ω∈s

x−→ fω(xm)aωiγs

]1/C
A classic situation when the above condition is fulfilled occurs when all transitions
ω where xi appear (i.e., aωi > 0), the transition rate is fω(x) = cωxi (i.e., aωi =
aω = 1). In that case, the above equation simplifies to

x(m+1)i =

∑
ω∈ x−→ ξω∑

s

∑
ω∈s

x−→ cωγs

For example, the pCTMC associated with the SIR models in Fig. 6.1 satisfies
the former property for all parameters, because all transition rates are expressions

2. ξo(ω, i) = ξo(s, i)(s′), with ω the transition from s to s′

3. Note that Pi always admits non-negative roots. Indeed, Pi(0) ≤ 0 and Pi(M) > 0 for
M > 0 sufficiently large. Therefore, by the intermediate value theorem, there exists y0 ∈ [0,M)
such that Pi(y0) = 0.
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either of the form c · plock · beta or the form c · plock · gamma for some constant
c > 0. Furthermore, if we fix the value of the parameter plock the remaining
parameters satisfy the latter property. In Section 6.6, we will take advantage of
this fact for our calculations.

Finally, we show how to compute γo(s, i) and ξo(ω, i) w.r.t. the observation
o = ℓ0t0 · · · t|o|−1ℓ|o| by using standard forward and backward procedures. We
define the forward function αo(s, i) and the backward function βo(s, i) respectively
as

αo(s, i) = l(Y0:i = ℓ0 . . ℓi, T0:i−1 = t0 . . ti−1, Xi = s | P(xm)) , and
βo(s, i) = l(Yi:T = ℓi . . ℓT , Ti:T−1 = ti . . tT−1 | Xi = s,P(xm)) .

These can be computed using dynamic programming according to the following
recurrences. Let P(xm) = ⟨S,L, ℓ, R, π⟩, then

αo(s, i) =

{
π(s)ϕo(s, i) if i = 0

ϕo(s, i)
∑

s′∈S
R(s′,s)
E(s′) αo(s

′, i− 1) if 0 < i ≤ |o| (6.8)

βo(s, i) =

{
1 if i = |o|∑

s′∈S
R(s,s′)
E(s) βo(s

′, t+ 1)ϕo(s
′, t+ 1) if 0 ≤ i < |o| (6.9)

where

ϕo(s, i) =

{
[[ℓ(s) = ℓi]]E(s)e−E(s)ti if 0 ≤ i < |o| and ti ̸= ∅
[[ℓ(s) = ℓi]] if t = |o| or ti = ∅. (6.10)

Finally, for s ∈ S and ω = (s
fω−→ s′), γo(s, i) and ξo(ω, i) are related to the

forward and backward functions as follows

γo(s, i) =
αo(s, i)βo(s, i)∑

s′∈S αo(s′, i)βo(s′, i)
, (6.11)

ξo(ω, i) =
αo(s, i)fω(xm)ϕo(s

′, i+ 1)βo(s
′, i+ 1)

E(s)
∑

s′′∈S αo(s′′, i)βo(s′′, i)
. (6.12)

The case of non-timed observations. Consider the limit situation when dwell
time variables are not observable (i.e., for all traces, ti = ∅ for all i = 1 . . . |o| − 1).
Under this assumption, two CTMCs M1 and M2 having the same embedded
Markov chain satisfy l(M1;O) = l(M2;O). In other words, when dwell time vari-
ables are not observable the MLE objective does not fully capture the continuous-
time aspects of the model under estimation.

The next section provides experimental evidence that, when the number of
parametric transitions is sufficiently small relative to that of constant transitions,
our algorithm can hinge on the value of the transition rates that are fixed, leading
the procedure to converge to the real parameter values.
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6.5 Experimental evaluation
We implemented the algorithm from Section 6.4 as an extension of the Jajapy

Python library (see Chapter 7) [73], which has the advantage of being compatible
with Prism models. In this section, we present an empirical evaluation of the
efficiency of our algorithm as well as the quality of their outcome. To this end, we
employ a selection of CTMCs from the QComp benchmark set [1]. Experiments
on each model have been designed according to the following setup.

For each model, we selected a set of parameters to be estimated as well as the set
of observable atomic propositions 4. We then estimated the parameter values from
a training set consisting of 100 observation sequences of length 30, generated by
simulating the original benchmark model. As in the previous chapter, the traces
are long enough to explore the state space. We chose to use only 100 traces to
highlight the efficiency of our method in terms of input data and to maintain a low
computation time. After the estimation, we verify all the formulas associated with
the given benchmark model and compare the result with the expected one.

We perform experiments both using timed and non-timed observations. Each
experiment is repeated 10 times by randomly re-sampling the initial parameter
values x0 in the range [0.00025, 0.0025]. We annotate the running time, the relative
error δi for each parameter xi, and the relative error Φi for each formula 5.

Model |M| |→| |p| Timed Observations Non-timed Observations
Time(s) Iter avg δ avg Φ Time(s) Iter avg δ avg Φ

polling 240 800 2 136.430 4 0.053 0.421 33.743 12 1.000 7.146
cluster 276 1120 3 132.278 3 0.089 1.293 279.853 12 0.313 3.827
tandem 780 2583 4 1047.746 3 0.043 0.544 4302.197 74 0.161 1.354

philosophers (i) 1065 4141 3 2404.803 3 0.043 0.119 2232.706 6 0.263 0.235
philosophers (ii) 1065 4141 4 9865.645 12 0.032 0.026 33265.151 200 0.870 2.573

Table 6.1 – Performance comparison on selected QComp benchmarks [1].

Table 6.1 reports the aggregated results of the experiments. The columns |M|,
|→| and |p| provide respectively the number of states and transitions of the model
and the number of parameters to estimate; the columns “Time” and “Iter” respec-
tively report the average running time 6 and number of iterations; and the columns
“avg δ” and “avg Φ” respectively report the average relative error of the estimated
parameters and model checking outcomes. Unsurprisingly, the quality of the esti-
mation is higher for timed observations. Despite in most cases the initial parameter
valuation x0 being picked far from the real parameter values, our method is capable
to get close to the expected parameter values by using relatively few observation
sequences. Most of the formulas employed in the experiments compute expected

4. The models are available at github.com/Rapfff/MM-PCTMC-benchmark-models. The
source files contain a description of the parameters and what is observable.

5. The relative error is |e− r|/|r|, where e (resp. r) is the estimated (resp. real) value.
6. Experiments were performed on a Linux machine with an AMD-Ryzen 9 3900X 12-Core

processor and 32 GB of RAM.
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accumulated rewards for a time horizon exceeding that of the used training set,
as a consequence, also the error tends to build up. The issue can be tamed by
having longer observations in the training set. Notably, for timed observations,
each iteration is more expensive than non-timed ones, but the additional overhead
is largely compensated by a consistently smaller number of iterations. Interest-
ingly, the number of iterations from timed to non-timed training set seems to grow
exponentially with the number of parameters to estimate.

To understand how, for non-timed observation, the quality of the estimation
varies based on the number of constant transitions we ran our algorithm on two
variants of the philosophers model: (i) with the variable gammax as a constant;
and (ii) with gammax as a parameter. The algorithm clearly benefits from the
presence of constant transitions and it converges way faster to better estimates.

Figure 6.4 – Comparison of the performance of the estimation for timed and non-
timed observations on the tandem queueing network with different size of the queue.

Fig. 6.4 reports the results of the experiments performed on the tandem queue-
ing network model from [101] for different sizes of the queue. Each experiment was
repeated 10 times by randomly re-sampling the initial valuation x0 in the interval
[0.1, 5.0]. Accordingly, measurements are presented together with their respective
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error bars. The graph of the running time (cf. Fig. 6.4 bottom) follows a quadratic
curve in the number of states both for timed and non-timed observations. However,
for non-timed observations, the variance of the measured running times tends to
grow with the size of the model. Fig. 6.4 (top) shows how the L1-norm (resp. L∞-
norm) of the vector δ = (δi) may vary for different size of the model. The variance
of the measured relative errors is larger in the experiments performed with non-
timed observations. Notably, for timed observations, the quality of the estimation
remained stable despite the size of the model increased relative to the size of the
training set. This may be explained by the fact that, in the tandem model, the
parameters occur in many transitions.

6.6 Case Study: SIR modelling of pandemic
In this section, we take as a case study the modelling pipeline proposed by

Milazzo [81] for the analysis and simulation in Prism of the spread of COVID-
19 in presence of lockdown countermeasures. The modelling pipeline includes:
(i) parameter estimation from real data based on a modified SIR model described
by means of a system of ODEs; (ii) encoding of the modified SIR model into as a
Prism model; and (iii) stochastic simulation and model checking with Prism.

The model devised in step (ii) is depicted in Fig. 6.1 (left). However, to perform
the analysis, Milazzo had to apply “a couple of modelling tricks (variable pruning
and upper bounds) that allowed state space of the model [..] to be reduced by sev-
eral orders of magnitude.” [81]. These kinds of modelling tricks are not uncommon
in formal verification, but they require the modeler to ensure that the parameter
values estimated for the original model are still valid in the approximated one. In
this section, we showcase the use of our algorithm to simplify this task. Specifically,
we generate two training sets by simulating the SIR model in Fig. 6.1 using Prism
and, based on that, we re-estimate beta, gamma, and plock on an approximated
version of the model (cf. Fig. 6.5).

ctmc
// bounds
const int ubound_i; const int lbound_i; const int nb_r = 10;
const double size_r = 500/nb_r; const int SIZE = 100000;
const double beta; const double gamma; const double plock; // SIR model parameters

module SIR
i : [lbound_i..ubound_i] init 48;
r : [0..nb_r − 1] init 0;

[infection] i>0 & i <ubound_i → i ∗ (SIZE − (i + (r + 0.5) ∗ size_r)) : (i′=i + 1);
[recovery] i>0 & r<nb_r − 1 → i ∗ ((size_r) − 1)/(size_r) : (i′=i − 1);
[recovery] i>0 & r<nb_r − 1 → i ∗ 1/(size_r) : (r′=r + 1) & (i′=i − 1);
[recovery] i>0 & r=nb_r − 1 → i : (i′=i − 1);

endmodule

module Rates
[infection] true → beta ∗ plock/SIZE : true;
[recovery] true → gamma ∗ plock : true;

endmodule

Figure 6.5 – Approximated SIR model.
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Parameter Expected Value Estimated Value Absolute Error
beta 0.122128 0.135541 0.013413
gamma 0.127283 0.128495 0.001212
plock 0.472081 0.437500 0.034581

Table 6.2 – Parameter estimation on the approximated SIR model.

The first training set represents the spread of the disease without lockdown (i.e.,
plock = 1), while the second one is obtained by fixing the value of plock estimated
in [81] (i.e., plock = 0.472081). In line with the data set used in [81], both training
sets consist of one (timed) observation reporting the number of infected individuals
for a period of 30 days.

The estimation of the parameters beta, gamma and plock is performed on the
model depicted in Fig. 6.5. As in [81], we use an approximated version of the
original SIR model (cf. Fig. 6.1) obtained by employing a few modelling tricks:
variable pruning, set upper bounds on the state variable i, and re-scaling of the
variable r in the interval [0, nb_r − 1]. These modelling tricks have the effect to
reduce the state space of the underlying CTMC, speeding-up in this way parameter
estimation and the following model analysis.

We perform the estimation in two steps. First, we estimate the values of beta
and gamma on the first training set with plock set to 1 (i.e., with no restrictions).
Then, we estimate the value of plock on the second training set with beta and
gamma set to the values estimated in the first step. Each step was repeated 10
times by randomly re-sampling the initial values of each unknown parameter in the
interval [0, 1]. Table 6.2 reports the average estimated values and absolute errors
relative to each parameter. The running time of each estimation was on average
89.94 seconds 7. Notably, we were able to achieve accurate estimations of all the
parameters from training sets consisting of a single partially-observable execution
of the original SIR model. As observed in Section 6.5, this may be due to the fact
that each parameter occurs in many transitions.

This case study demonstrates that our estimation procedure can be effectively
used to simplify modelling pipelines that involve successive modifications of the
model and the re-estimation of its parameter values.

6.7 Conclusion and Future Work
We presented a novel technique to estimate parameter values of CTMCs ex-

pressed as Prism models from partially-observable executions. We demonstrated,
with a case study, that our solution is a concrete aid in applications involving
modelling and analysis, especially when the model under study requires successive
approximations that require re-estimation of the parameters. The major strengths
of our algorithm are (i) its interoperability with the model checking tools Prism and

7. Experiments were performed on a Linux machine with an AMD-Ryzen 9 3900X 12-Core
processor and 32 GB of RAM.
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Storm, and (ii) the fact that it accepts partially-observable data sets where both
state and dwell times can be missing. However, the generality of our approach
comes at the expense of efficiency. The computations of the forward and backward
functions which are required to update the coefficients of the surrogate function 6.4
have a time and space complexity that grows quadratically in the number of states
of the pCTMC, thus limiting the number of components that our implementa-
tion can currently handle. In future work, we consider investigating how to speed
up the computation of the forward and backward functions either by integrating
GPU-accelerated techniques from [102] or by replacing their exact computation in
favor of numerical approximations obtained through Monte Carlo simulations in
line with the idea employed in Monte Carlo EM algorithm [96].

Notably, the algorithm presented in this paper was devised following simple op-
timisation principles borrowed from the MM optimisation framework. We suggest
that similar techniques can be employed to other modelling languages (e.g., Markov
automata [103, 104]) and metric-based approximate minimisation [105, 106]. An in-
teresting future direction of research consists in extending our techniques to MDPs
by integrating the active learning strategies [71].
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Chapter 7

Jajapy: a learning library for
stochastic models

We present Jajapy, a Python library that implements a number of methods
to aid the modelling process of Markov models from a set of partially-observable
executions of the system. Currently, Jajapy supports different types of Markov
models such as discrete and continuous-time Markov chains, Markov decision pro-
cesses, hidden Markov models and Gaussian observation hidden Markov models.

Jajapy can be used both to learn the model from scratch or to estimate pa-
rameter values of a given model so that it fits the observed data the best. To
this end, the tool offers different learning techniques, either based on expectation-
maximization or state-merging methods, each adapted to different types of Markov
models. One key feature of Jajapy consists in its compatibility with the model
checkers Storm and Prism.

This Chapter briefly presents Jajapy’s functionalities and reports an empirical
evaluation of their performance and accuracy. We conclude with an experimen-
tal comparison of Jajapy against AALpy, which is the current state-of-the-art
Python library for learning automata. Jajapy and AALpy complement each
other, and the choice of the library should be determined by the specific context
in which it will be used.

Jajapy’s source code follows a modular architecture design and can therefore
be extended to other modelling formalisms and learning algorithms. Jajapy’s
documentation can be found on Read the Docs [107] that is complemented with a
short video-introduction available on Zenodo [108].

7.1 Introduction

Markov models are a very popular formalism. Discrete-time Markov chains
(MCs) and continuous-time Markov chains (CTMCs) have wide applications in per-
formance and dependability analysis, whereas Markov decision processes (MDPs)
are key models for stochastic decision-making and planning which find numerous

73
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applications in the design and analysis of cyber-physical systems.
Prism [12] and Storm [13] are two widely-used model checking tools that pro-

vide an efficient and reliable way to verify the correctness of probabilistic systems.
They both accept models written in the Prism language, an expressive state-based
language based on [80]. Prism is a powerful tool for modeling and analysing
MCs, MDPs, and probabilistic timed automata. It has a user-friendly interface
and supports a variety of analysis techniques, including model checking, parameter
synthesis, and probabilistic model checking. Storm, on the other hand, is a highly
scalable and efficient tool for analysing probabilistic systems with continuous-time
and hybrid dynamics [109]. It supports both explicit and symbolic model represen-
tation, and provides state-of-the-art algorithms for model checking and synthesis
tasks. Both tools have been extensively used in academia and industry to analyse a
wide range of systems, including communication protocols, cyber-physical systems,
and biological systems.

The standard assumption of model checking tools is that the model is known
precisely. For many application domains, this assumption is too strong. Often the
model is not available, or at best is partially known. In such cases, the model is
typically estimated empirically from a set of partially-observable executions (a.k.a.
traces). Depending on the system under consideration, traces may be collected
offline in the form of time series or (possibly continuous) streams of system logs, or
the modeller can actively query the system and stir the exploration of its dynamics.
In the latter situation, interaction with the system may be limited due to safety
critical concerns, or simply to comply with the budget allocated for the task.

To effectively exploit the characteristics of different learning scenarios it is con-
venient to have a single library that provides a variety of learning algorithms,
which can handle different learning scenarios and model types seamlessly, while
integrating well with the model-and-verification workflow of Prism and Storm.

In this Chapter, we present Jajapy [73, 110], a free open-source Python library
that offers a number of techniques to learn Markov models from traces and is
interoperable with Prism and Storm. Jajapy implements the following machine-
learning techniques:

(i) Alergia [46, 47] and IOAlergia [49, 111], passive learning procedures that
learn respectively MCs and (deterministic) MDPs from a set of traces by
successively merging compatible states;

(ii) a number of adaptations of the Baum-Welch algorithm [26] to learn MCs,
MDPs [71], HMMs [26], GoHMMs [112] and CTMCs [72] by estimating their
transition probabilities given a set of traces and the size of the resulting
model;

(iii) active learning strategies to enhance the quality of the MDPs learned using
the Baum-Welch algorithm [71] when the user has the possibility to interact
with the system (see Chapter 5);

(iv) MM algorithms [72] for estimating parameter value in parametric CTMCs
(pCTMCs) from a set of (possibly non-timed) traces (see Chapter 6).

Jajapy implements also metrics to independently evaluate the output model against
a test set. This is particularly useful to measure the degree of generalisation that
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the output model offers on top of the training set and assess whether the output
model overfits the training data or not.
Interoperability with Prism and Storm is achieved by supporting import and
export functions for Prism models as well as Stormpy sparse models.

Related work. AALpy [61] is a recent Python library that can learn both non-
stochastic and stochastic models. In particular, AALpy can learn MDPs using
L∗
MDP [67], an extension of Angluin’s L∗ algorithm [33], and MCs using Alergia

[46, 47]. In Section 7.5.4, we compare Jajapy and AALpy performance.
Other automata learning frameworks have been developed as well. For example,
Learnlib [113] and libalf [114], which learn non-stochastic models. In contrast with
these tools, as of now, Jajapy primary focus is on learning Markov models.
In this Chapter, we present the different sampling methods implemented in Ja-
japy and AALpy. However, other methods also exist, such as the MDI algorithm
[51] and [115], two state-merging based approaches, or the Bayesian method using
Gibbs sampling [116] proposed by Neal in [34].
MDPs are extensively used in reinforcement learning as in [117, 118, 119], and in
robust reinforcement learning [120] as in [121, 122, 123]. In this context, the ob-
jective is to learn an optimal policy that maximises long-term rewards in a given
environment.
A related line of research is model synthesis. Counterexample-guided inductive
synthesis (CEGIS) [124] study the problem of completing a given program sketch
(i.e., a probabilistic program with holes) so that it satisfies a given set of quan-
titative specifications. Another approach is parameter synthesis [125, 126], where
the objective is to find some (or all) instances of a given parametric Markov model
satisfying a logic formula. In [127], the authors combine parameter synthesis and
parametric inference techniques to synthesize feasible parameter valuations and
quantify the confidence that the corresponding model satisfies a given property of
interest.

Outline. We start with a quick introduction to Jajapy functionalities in Section
7.2, then we explain Jajapy’s features from a theoretical perspective in Section
7.3. In Section 7.4, we present some technical aspects of Jajapy, and in Section
7.5 we evaluate our tool and compare it to AALpy.

7.2 Jajapy in a nutshell

Jajapy offers learning methods to construct an accurate model of a system
under learning (SUL) from a set of traces and export it to a format that can be
directly used in Storm and Prism for analysis. All models supported by Jajapy
can be imported from and exported to Prism and Stormpy, except HMMs and
GoHMMs: HMMs being equivalent to MCs (see Theorem 2.5.1), they can indirectly
been exported to model checkers (after being converted to MCs); and GoHMMs
are not compatible with these two model checkers since they do not support model
checking for this family of Markov models.
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Figure 7.1 – A complete modeling and verification workflow using Jajapy . The
phases where Jajapy is employed are highlighted in green, whereas the phase in
blue is assumed to be performed with Storm or Prism.

from jajapy import BW
type(training_set) # list
output_model = BW().fit(training_set , nb_states=10)
type(output_model) # stormpy.SparseDtmc

Figure 7.2 – Simple execution of Jajapy BW to learn an MC with 10 states.

In the following, we call training set (resp. test set) the collection of traces used
to learn the SUL model (resp. to evaluate the learning output model). Depending
on the nature of the training set, Jajapy learns different types of models: (i) MCs
and HMMs are learned from sequences of labels (i.e., sequences of atomic proposi-
tions), (ii) CTMCs and pCTMCs are learned from times series of labels, (iii) MDPs
are learned from alternating sequences of actions and labels, and (iv) GoHMMs are
learned from sequences of vectors of n real values, n being fixed for all the sequences.
A trace denotes, depending on the context, a sequence of labels, a time series of
labels, an alternating sequence of actions and labels, or a sequences of vectors of
real numbers. The length of a trace is always the number of labels (or vectors) it
contains.

The first and main learning algorithm offered by Jajapy is the Baum-Welch
(BW) algorithm. It takes as input a training set and an initial hypothesis, i.e. a
Markov model. During the BW execution, the transition probabilities of this initial
hypothesis will be updated but no state will be added/removed from it. Therefore,
the number of states in the resulting model will be equal to the number of states
in the initial hypothesis. By default Jajapy generates a random initial hypothesis
(given as input the number of states) but the user can also provide one explicitly.
This enables the user to exploit his knowledge of the SUL to enhance the learning
process. Such an initial hypothesis can be a Jajapy model, or a Stormpy sparse
model or a model saved in a Prism file if the initial hypothesis is neither an HMM
nor a GoHMM. Given a training set and an initial hypothesis, the BW algorithm
constructs an approximate representation of the SUL, called output model.

As an alternative to the BW algorithm, Jajapy offers implementations of Aler-
gia and IOAlergia to learn respectively MCs and MDPs. These algorithms take as
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input the training set and a confidence parameter.
Once Jajapy has produced the output model, the user can use Stormpy to

verify the model against some properties of interest supported by Storm. The
output model can also be exported to a Prism model and analysed with the Prism
model checker.

7.3 Learning probabilistic models

In this Section, we briefly describe the key characteristics of the learning meth-
ods for Markov models currently available in Jajapy and AALpy.
These methods belong to two categories, active and passive. Active learning meth-
ods learn from interactions with the SUL, while passive methods learn from the
training set only. Active learning methods are usually more efficient (in terms of
data), but can be used only if it is possible to interact with the SUL.

Some learning methods allow the user to decide the size (i.e. the number of
states) of the output model, preventing the algorithm from generating models too
large to be efficiently analysed. The downside of such a feature consists in the fact
that, if the number of states requested is too large (resp. small), the output model
may overfit (resp. underfit) the training set.
Some of the learning methods described below assume the Markov model under-
lying the SUL to be deterministic (see definition 2.4.1). When such methods are
exercised with a SUL that is non-deterministic, they are not guaranteed to converge
to the true model, instead, they will return a deterministic model that approxi-
mates the SUL. Typically, the approximated model is larger than the SUL.

Expectation Maximisation approach. The Baum-Welch (BW) algorithm is
an iterative maximum likelihood estimation method to estimate the parameters of
Markov models [25]. This technique is an application of the Expectation Maximi-
sation algorithm. Originally designed for Hidden Markov Models [26], it has been
adapted to MCs, CTMCs, MDPs and GoHMMs [71, 72, 112].
Given a set of traces O (the training set) and an initial hypothesis H0, the BW
algorithm iteratively updates H0 such that the likelihood that the hypothesis gen-
erates O has increased with respect to the previous step. The algorithm stops when
the likelihood difference between two successive hypotheses is lower than a fixed
threshold ϵ. In Jajapy, the user can also set an upper bound on the number of
BW iterations. BW converges to a local optimum [128].
The BW algorithm is a passive learning approach, it allows the user to decide the
size of the output model, and can learn non-deterministic models.

Active learning with sampling strategy. Jajapy implements an active learn-
ing extension of the BW algorithm for MDPs [71]. This method uses a sampling
strategy to generate new training samples that are most informative for the current
model hypothesis. With this method, the user decides the size of the output model.
This algorithm is able to learn non-deterministic models.
Currently, Jajapy only supports the sampling strategy described in [71].
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Algorithm Model Reference Active # states Non-det. Jajapy AALpy
BW-MC MC [71] ✗ ✓ ✓ ✓ ✗

BW-CTMC CTMC [72] ✗ ✓ ✓ ✓ ✗

BW-HMM HMM [26] ✗ ✓ ✓ ✓ ✗

BW-GoHMM GoHMM [112] ✗ ✓ ✓ ✓ ✗

MM-pCTMC pCTMC [72] ✗ ✓ ✓ ✓ ✗

BW-MDP MDP [71] ✗ ✓ ✓ ✓ ✗

Active-BW MDP [71] ✓ ✓ ✓ ✓ ✗

Alergia MC [46, 47] ✗ ✗ ✗ ✓ ✓

IOAlergia MDP [49, 68] ✗ ✗ ✗ ✓ ✓

L∗
MDP MDP [67] ✓ ✗ ✗ ✗ ✓

Table 7.1 – Key characteristics of the selected learning algorithms for Markov
models.

State-merging approach. Both Jajapy and AALpy provide an implementa-
tion of the Alergia algorithm [46, 47] to learn MCs and its extension IOAlergia [49]
to learn MDPs. These algorithms use a state-merging approach. Starting from a
maximal tree-shaped probabilistic automaton representing the training set, they
iteratively merge states that are ‘similar enough’ according to an Hoeffding test
[52]. The accuracy of the Hoeffding test is provided as input. These algorithms are
passive, they do not allow the user to choose the number of states in the output
model, and they assume the SUL to be deterministic.

Active learning with membership and equivalence queries. AALpy pro-
vides an implementation of L∗

MDP [67], an extension of Angluin’s L∗ algorithm [33]
to learn MDPs. As for Alergia, this method assumes the SUL to be deterministic,
and the size of the output model cannot be chosen in advance.

Table 7.1 summarises the key characteristics of the learning methods discussed
above. The 5th column indicates whether or not the user can choose the number
of states in the output model, and the 6th column indicates whether the algorithm
is able to generate non-deterministic models or not.

7.4 Architecture and technical aspects
In this Section, we describe some internal aspects of Jajapy.

Jajapy models. In the following we describe the structure and the relations
between the different model classes in Jajapy (see the UML diagram in Figure
7.3).
There exist three families of models in Jajapy, each of them represented by its

abstract class: Base_MC, corresponding to the models where the states are labelled
(MCs, MDPs, CTMCs), Base_HMM, corresponding to the models where the states
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Figure 7.3 – Class diagram for Jajapy model classes.

are associated to a probability distribution over the labels/observations (HMM,
GoHMMs), and Parametric_Model, where the transitions probabilities/rates are
polynomial functions over a set of parameters (pCTMCs). These abstract classes
are inherited by the six classes dedicated to the six kind of Markov models currently
supported by Jajapy. Each of these three abstract classes inherits from an abstract
class Model, that implements the methods to run the model, generate traces and
compute the loglikelihood of a set of traces under the model. This class contains
also an attribute matrix which contains the transition probabilities/rates. This
matrix is a Numpy ndarray [129] of floats. Currently, all models in Jajapy use an
explicit state-space representation.

The Base_MC and Parametric_Model classes have an attribute labelling con-
taining the label associated to each state. This attribute is a Python list whose
length equals the number of states of the model.

Such an attribute does not exist for Base_HMM, since its states are not associated
with one label but a probability distribution. The HMM class has an attribute
output, a Numpy ndarray or a Python list of dimension |S| × |L|, describing
this probability distribution. The output attribute of the GoHMM class is a Numpy
ndarray of dimension |S|×n×2, with n the degree of the GoHMM (i.e. the number
of Gaussian distributions associated to each state) containing the two parameters
µ and σ for each distribution.

Finally, Jajapy uses Sympy [130] to represent symbolic expressions used for
transition rate expressions in parametric models: (i) the transition_expr at-
tribute is a Python list of str containing the different polynomial functional used
by the model transitions. (ii) The matrix attribute contains |S|2 integers corre-
sponding to transition_expr indexes. For instance, matrix[s1,s2] == 3 means
that the transition from state s1 to state s2 is expressed by transition_expr[3].
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(iii) The parameter_str attribute is a Python list of str containing the name of all
parameters, (iv) the parameter_values attribute is a Python dict where the keys
are str corresponding to parameter names, and the value is a float corresponding
to the value of the parameter (or a numpy.nan if the parameter is not instanti-
ated), and (v) parameter_indexes is a list of Numpy ndarray containing, for each
parameters, the transitions in which this parameter is used in the expression.
Given a transition expression (from transition_expr) and the parameter_values
dictionary, the Sympy library evaluates the value of this expression, assuming that
all the parameters used in the expression are associated to a numerical value in the
dictionary.

Learning with BW. BW executions are handled by the BW class.
The BW.fit method starts by determining which model formalism should be

used according to the given initial model (if provided) and the training set.
Then, it selects the appropriate update procedure and runs the BW algorithm.

Jajapy aims at reducing the number of computation. An execution of the BW
algorithm resolves into a sequence of matrix operations that are handled by Numpy.
In addition, if Jajapy is executed on a Linux machine, it supports multithreading
to speed up the BW algorithm: at each BW iteration, Jajapy executes one thread
for each unique trace in the training set. Otherwise, each unique trace is processed
sequentially.

Output models. The output format of any Jajapy learning methods can be
chosen among the following: Stormpy sparse model or Jajapy model. The output
model can also be exported to a Prism file by setting the output_file_prism
parameter of the BW.fit method.

Representing training sets and test sets. Jajapy uses its own Set class to
represent training and test sets. This class has two attributes: (i) sequences, the
set of all unique traces in the training set, and (ii) times, which contains, for each
trace in sequences, the number of times this trace has been observed. This reduces
significantly the number of computations during the learning process when traces
appear several times in the training set. Nevertheless, the training set can be given
as a Python list or a Numpy ndarray to the BW.fit method.
In Jajapy training sets and test sets are not represented through a prefix tree (as
is normal in other libraries) since this is only advantageous when Jajapy is used
in single-thread mode. The training sets/test sets are sorted by Jajapy only in
this case.

7.5 Experimental evaluation and comparison

In this Section, we first test Jajapy validity. Secondly, we empirically evaluate
how the different learning methods scale with the size of the output model and the
training set. Finally, we compare it with AALpy.
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All the experiments were run on a Linux machine with an AMD Ryzen 9 3900X
12-Core processor and 32 GB of memory.

7.5.1 Jajapy validation testing

We test Jajapy validity as follows: (i) we translate a Stormpy model M
representing the Yao-Knuth’s die [3] to a Jajapy one; (ii) we use it to generate a
training set of 10,000 traces of length 10: 10 being big enough to reach the final state
with a decent probability and 10,000 being small enough to learn the model in few
seconds, but sufficiently big to learn a correct approximation of the SUL; (iii) we
learn, using Jajapy BW and Alergia implementations, two new Stormpy models
M′ and M′′, and finally (iv) M′,M′′ are compared both w.r.t. their outcomes on
some relevant model checking queries and their loglikelihood distance on a test set
relative to the true model M.

The first three queries correspond to the probability that the die roll gives us
1, 2 or 3. The next three queries indicate the probability that the die gives us 4,
5 or 6 without ever going through the same state (except the final one) more than
once. Finally the last query corresponds to the probability that 10 throws of the
coin are enough to simulate the roll of the die.
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Figure 7.4 – The Yao-Knuth’s die from [3]

We run these experiments on a Markov chain modelling the Yao-Knuth’s die
represented in Figure 7.4 once with p = 0.5 (i.e. with a unbiased coin) and once
with p = 0.9. Table 7.2 and 7.3 show that Jajapy learned a valid representation
of the source model regardless of the algorithm used. When the coin is unbiased,
Alergia learns a bigger model than BW (23 states against 14) which is better in
terms of loglikelihood distance but worst for the model checking queries. This is
explained by the fact that, in this case, Alergia is not able to merge a large number
of states and, therefore, generates a model close to a PTA, which is efficient in terms
of loglikelihood distance (especially when the sequences in the test set are the same
length as those in the training set). When the coin is biased, some possible traces
do not appear or appear very little in the training set. Therefore, the training set
being composed of much more similar traces, the initial PTA is much smaller as
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true BW Alergia
# states 14 14 23
Pr(F (1)) 0.167 0.168 0.168
Pr(F (2)) 0.167 0.170 0.169
Pr(F (3)) 0.167 0.163 0.163
Pr(F≤4(4)) 0.125 0.130 0.143
Pr(F≤4(5)) 0.125 0.124 0.136
Pr(F≤4(6)) 0.125 0.107 0.129
Pr(F≤10(f)) 0.996 0.979 0.973
ll. distance 0.0 1.700 1.616
learning time (s) - 1.039 0.003

Table 7.2 – Results for an unbiased Yao-
Knuth’s die (p = 0.5).

true BW Alergia
# states 14 14 12
Pr(F (1)) 0.801 0.797 0.797
Pr(F (2)) 0.089 0.092 0.092
Pr(F (3)) 0.010 0.008 0.008
Pr(F≤4(4)) 0.081 0.088 0.076
Pr(F≤4(5)) 0.009 0.010 0.009
Pr(F≤4(6)) 0.001 0.002 0.002
Pr(F≤10(f)) 1.0 0.999 0.992
ll. distance 0.0 0.511 1.569
learning time (s) - 1.060 0.001

Table 7.3 – Results for a biased Yao-
Knuth’s die (p = 0.9).

well as the model generated by Alergia. On the other hand, the likelihood of the
sequences present in the test set and not in the training set can be fairly different
between the model generated by Alergia and the SUL. In other words, for the
same training set, a model generated by Alergia will often be less general than one
generated by BW, because Alergia is more sensitive to overfitting.

7.5.2 Experimental evaluation of the scalability

Scalability evaluation for MCs, CTMCs and MDPs.

To evaluate the scalability of our software, we report the running time and the
memory footprint required to learn models with an increasing number of states.

We use Jajapy to learn randomly generated transition-labeled MCs and CTMCs
ranging from 10 to 200 states, corresponding to models with up to 100 to 40,000
parameters (the number of parameters is at most s2, where s is the number of
states). We perform the same experiment for MDPs with 5 to 100 states and 4
actions, thus having at most 100 to 40,000 parameters (here the number of param-
eters is at most s2 · a, where s and a are respectively the number of states and
actions). We employ training sets containing 1,000 traces of length 10. These two
values offer a good compromise between accuracy and running time. We set the
size of the initial hypothesis equal to that of the SUL. The results are shown in
Fig. 7.5.

The running time for all type of SULs increases exponentially, but at a larger
rate for CTMCs: while one BW iteration for an MDP with 200 states and an MC
with 400 states took around two minutes in this setting, one BW iteration for a
CTMC with 200 states took 97 minutes. This is due to the computational difficulty
of calculating rates of exponential distributions when learning CTMCs parameters.
Memory usage also increases exponentially for all types of Markov models. These
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Figure 7.5 – Jajapy running time, memory usage and loglikelihood distance w.r.t.
the number of parameters of the hypothesis.
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exponential growths were expected, since the number of parameters to estimate
increases exponentially with the number of states.
Finally, as the complexity of the model increases, the loglikelihood distance grows.
This issue is usually mitigated by increasing the length and number of traces in
the training set. Another experiment, presented in Appendix C, demonstrates that
doubling the number of traces in the training set reduces the loglikelihood distance
by half.

Scalability evaluation for pCTMCs.

To evaluate the scalability of our software on pCTMCs, we refer to tandem
queueing experiment in Chapter 6, Section 6.5.

7.5.3 Comparison with hmmlearn
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Figure 7.6 – An HMM with 5 states.

In Chapter 4, we introduced hmmlearn, a Python library that implements the
BW algorithm for various extensions of HMMs, including GoHMM and HMM itself.
In the following, we compare the performance of both Jajapy and hmmlearn in
terms of running time and log-likelihood distance while learning the HMM depicted
in Figure 7.6.

For this experiment, both the training and test sets comprise 1,000 traces, each
with a length of 10. Both Jajapy and hmmlearn execute 20 BW iterations using
the same training set and commencing with identical 5-state hypotheses. This
experiment is repeated 10 times, with variations in the initial hypotheses. The
detailed results are presented in Table 7.4.

hmmlearn Jajapy
average ll. distance 0.714 0.416
average running time (s) 1.299 9.044

Table 7.4 – Results for the comparison of Jajapy and hmmlearn.
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Algorithm Model Jajapy AALpy
BW-MC MC ✓ ✗

BW-CTMC CTMC ✓ ✗

BW-HMM HMM ✓ ✗

BW-GoHMM GoHMM ✓ ✗

MM-pCTMC pCTMC ✓ ✗

BW-MDP MDP ✓ ✗

Active-BW MDP ✓ ✗

Alergia MC ✓ ✓

IOAlergia MDP ✓ ✓

L∗
MDP MDP ✗ ✓

Table 7.5 – Learning algorithms for Markov models implemented in Jajapy and
AALpy.

The results suggest that while Jajapy is comparatively slower than hmmlearn,
it demonstrates an ability to learn more accurate approximations in terms of log-
likelihood distance.
hmmlearn is faster than Jajapy because it runs compiled C code. However,
it’s important to note that hmmlearn only partially updates the transition prob-
abilities during each Baum-Welch (BW) iteration. Let bs,s′ represent the prior
probability of a transition from state s to s′, and b′s,s′ represent the new probabil-
ity as computed by the BW algorithm. In hmmlearn, this transition probability
is updated to:

bs,s′ + b′s,s′ − 1∑
s′′∈S bs,s′′ + b′s,s′′ − 1

As a result of this update mechanism, hmmlearn requires more iterations to
achieve the same level of accuracy as Jajapy .

7.5.4 Comparison with AALpy

AALpy is an active automata learning python library. AALpy implements
several learning algorithms to learn various families of automata. Since Jajapy
learns stochastic models only, we will focus here on these models. However, AALpy
is also able to learn non-stochastic models, as Deterministic Finite Automata or
Mealy Machines.
AALpy implements L∗

MDP , an extension of Angluin’s L∗ algorithm [67, 33] to
learn MDPs, and the Alergia algorithm to learn MCs.

Table 7.5 summarises all the learning algorithms available in Jajapy and AALpy
for stochastic models. We can notice that Jajapy can learn non-deterministic
models and CTMCs, which AALpy cannot. On the other hand, AALpy can learn
non-stochastic models, which Jajapy cannot. Finally, in contrast to AALpy, Ja-
japy output models are immediately usable in Stormpy.
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Jajapy Alergia vs AALpy Alergia

First, we compare Alergia implementations by Jajapy and AALpy for two
Yao-Kunth’dice (one with p = 0.5 and one with p = 0.9), using two training sets
containing each 10,000 traces of length 10. The results are summarised in Table
7.6 and 7.7.

There is no difference in the results obtained between these two implementations.

Formula Original Jajapy AALpy
# states 14 14 14
Pr(F (1)) 0.167 0.164 0.164
Pr(F (2)) 0.167 0.167 0.167
Pr(F (3)) 0.167 0.165 0.165
Pr(F≤4(3)) 0.125 0.126 0.126
Pr(F≤4(3)) 0.125 0.125 0.125
Pr(F≤4(3)) 0.125 0.126 0.126
Pr(F≤10(f)) 0.996 0.996 0.996
ll distance 0.0 0.0 0.0
learning time - 0.001 0.026

Table 7.6 – Results for an unbiased Yao-
Knuth’s die (p = 0.5).

Formula Original Jajapy AALpy
# states 14 14 14
Pr(F (1)) 0.801 0.807 0.807
Pr(F (2)) 0.089 0.088 0.088
Pr(F (3)) 0.01 0.01 0.01
Pr(F≤4(3)) 0.081 0.076 0.076
Pr(F≤4(3)) 0.009 0.007 0.007
Pr(F≤4(3)) 0.001 0.001 0.001
Pr(F≤10(f)) 1.0 1.0 1.0
ll distance 0.0 0.0 0.0
learning time - 0.001 0.027

Table 7.7 – Results for a biased Yao-
Knuth’s die (p = 0.9).

Only the execution time differs: Jajapy being faster than AALpy.

Jajapy BW vs AALpy L∗
MDP

We compare AALpy L∗ and Jajapy BW algorithms on learning two variants
of the grid-worlds presented in [71] and illustrated in Figure 7.7. this experiment
may seem similar to the one in Chapter 5, section 5.4, but it is not. In fact, here
we compare the L∗

MDP implementation offered by AALpy against the classic BW
implementation offered by Jajapy , whereas in Chapter 5, we were comparing it
with Active-BW.

Figure 7.7 – Grid worlds models. (Left) a 3x3 deterministic model; (Right) a 4x4
non-deterministic model.
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true AALpy Jajapy BW
overall # of labels - 74, 285 74, 285
# of traces - 15, 218 3, 714
# of states 17 18 17
loglikelihood distance 0.0 0.7305 0.3352
Prmax(F

≤4(goal)) 0.336 0.322 0.347
Prmax(¬G U≤4(goal)) 0.072 0.074 0.074

Running time - 1.15 s 290.8 s

Table 7.8 – Results for the 3x3 deterministic grid-world model.

true AALpy Jajapy BW
overall # of labels - 16,232,244 200,000
# of traces - 2, 174, 167 10,000
# of states 28 207 28
loglikelihood distance 0.0 0.4963 0.4680
Prmax(F

≤7(goal)) 0.687 0.680 0.692
Prmax(F

≤12(goal)) 0.996 0.995 0.996
Prmax(¬(C | W) U≤7(goal)) 0.520 0.514 0.504
Running time - 290.65 s 15,303.83 s

Table 7.9 – Results for the 4x4 non-deterministic grid-world model.

We run, for both models, AALpy for 200 L∗ learning iterations and Jajapy
for 200 BW iterations. We emphasize the fact that the two tools are using two
different learning algorithms that are, in the author’s opinion, complementary.

Table 7.8 and 7.9 show the results respectively for the 3x3 grid and the 4x4
grid. In both cases, the loglikelihood distance is computed for a test set containing
10,000 traces of length 20. First, we observe that, when the SUL is deterministic,
the two output models are similar. Actually, Jajapy output is slightly closer to
the SUL, but AALpy ran faster. However, when the SUL is non-deterministic,
the difference between the two output models is more important. AALpy ran
faster but produced a model with almost 8 times more states. Indeed L∗

MDP , by
property, learned a deterministic approximation of the SUL, that is much bigger
than the SUL itself. In terms of loglikelihood distance, AALpy output model is
slightly less accurate than Jajapy one. Finally, we notice that Jajapy uses far
less information than AALpy, and does not require any interaction with the SUL
(using a passive learning approach), in contrast to AALpy.

The fact that AALpy runs faster than Jajapy can be explained by the com-
plexity of the two algorithms involved here, namely L∗

MDP and the BW algorithm.
The BW algorithm is known to be costly in terms of time and memory complexity.
Khreich et al. [41] point out several cases where, due to its cost, the BW algorithm
could not be applied. In the same paper, they present a variant of it, requiring
fewer memory resources while achieving the same results. However, Bartolucci et
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al. [131] show that this variant suffers from numerical problems.
In general, when learning MDPs, if it is impossible to interact with the SUL,

we recommend Jajapy BW. Otherwise, we recommend using AALpy L∗
MDP ,

especially when the SUL is known to be deterministic.

7.6 Conclusions and Future Work
We presented Jajapy, a Python learning library for Markov models, and dis-

cussed its key features, implementation, usage, and performance evaluation. Ja-
japy is designed to be interoperable with Prism and Storm, and offers a variety
of learning methods, both active and passive. We compared Jajapy and AALpy
and argued that the two libraries complement each other, thus the choice of which
library to use depends on the learning scenario.

As a future work, we consider implementing GPU-accelerated methods to speed-
up the forward-backward computations required at each iteration of the BW algo-
rithms borrowing ideas from [102, 132].
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Chapter 8

Closing Remarks

In this thesis, we studied the problem of modelling Markov models from empir-
ical (partial) observations of the system under learning. We tackled this problem
from different angles both considering different types of Markov models and differ-
ent sampling scenarios. The technical contributions of this thesis are

1. an active learning strategy to enhance the accuracy of the Baum-Welch al-
gorithm to learn MDPs. We showed that this algorithm over performed the
classic BW algorithm, but requires the learner to interact with the SUL.

2. A parameter estimation procedure for parametric continuous-time Markov
chains expressed in the Prism language. The algorithm has been developed
following the iterative optimisation framework known as MM algorithm. No-
tably, the estimation procedure imposes little requirements on the input train-
ing data. Indeed it is robust to missing dwell time data and assumes that
states are only observable through their atomic propositions.

3. An open source Python library implementing various learning algorithms
spanning different families of Markov models. The library is designed to
be compatible with Prism and interoperable with Storm via StormPy.
This makes Jajapy a valuable aid in the modelling process of safety-critical
systems as well as a useful tool for model-driven development.

By expanding upon existing methodologies, we have enriched the field of learn-
ing stochastic models by devising two novel algorithms: one improving the perfor-
mance of the BW algorithm to learn MDPs (assuming that the learner can interact
with the SUL), and the second by learning synchronous compositions of CTMCs
from traces with missing dwell times, enhancing the applicability of Markov models
to real-world scenarios where data might be incomplete.
Additionally, our contributions extend to the practical realm of system analysis and
verification. We have augmented the capabilities of existing model checkers Storm
and Prism by developing an open-source Python library, Jajapy, compatible with
both of them. This integration bridges the gap between model learning and for-
mal verification, enabling practitioners to seamlessly transition from the modelling
phase to comprehensive system analysis. By harmonising learning algorithms with
model checking techniques, our approach facilitates the identification of potential
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issues and vulnerabilities within critical systems.

It is worth mentioning that Jajapy was successfully employed in the research
conducted within the ongoing ‘Sleep Revolution’ project at the University of Reyk-
javik. One goal of this project is to automatically assess the sleep quality of specific
patients using recorded physiological signals such as EEG and PSG, aiming to de-
tect sleep disorders. Specifically, we employed Jajapy BW implementation to
learn a GoHMM, aimed at pinpointing the grey zones, i.e., areas where our alter-
nate estimator (an autoencoder) struggles to accurately identify sleep stages. As
this work is still in progress, we will refrain from delving deeper into the specifics
here.

In summary, this thesis represents a multifaceted advancement in the domain
of learning stochastic models. Through the development of innovative algorithms,
open-source libraries, and integrative approaches, we have contributed to the broader
fields of machine learning, system analysis, and verification. These achievements
collectively pave the way for enhanced modelling accuracy, refined parameter es-
timation, and more rigorous assessments of critical systems in real-world applica-
tions.



Appendix A

The Baum-Welch algorithm in
details

A.1 Convergence of the EM algorithm
Recall that the point of the EM algorithm is to find θ such that, for of observed

data X and a set of latent data Z, it maximises

l(θ;X) = Prθ(X) =
∑
z

Prθ(z)Prθ(X | z) (A.1)

The above likelihood function is often intractable since z is unobserved and its
distribution Pr(z; θ) is typically determined by the parameters θ.

The EM algorithm is an iterative optimisation technique aimed at maximis-
ing Equation (A.1). Starting from an initial parameter estimate θ0, the current
parameter estimate θm is updated by applying the following steps:
Expectation step (E-step) Compute the expected value of the log-likelihood

function relative to the conditional distribution of Z, given the observed data
X and the current parameter value estimates θm

Q(θ|θm) =
∑
z

Prθm(z | X) lnPrθ(X, z) (A.2)

Maximisation step (M-step) The next parameter estimates θm+1 are found as
those achieving the maximum value of Q(θ|θm). Formally

θm+1 = argmax
θ

Q(θ|θm) .

Notably, the new parameter estimate improves with respect to the previous one in
the sense that l(θm;X) ≤ l(θm+1;X).

Theorem (Convergence of the EM algorithm). The EM algorithm converges to a
local maximum of the likelihood of the training set [38].
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Proof. The EM algorithm is an iterative procedure for maximising l(θ;X), equiv-
alently ln l(θ;X). Assume that after the mth iteration the current estimate for θ
is given by θm. Since the objective is to maximise ln l(θ;X), we want to maximise
the difference

ln l(θ;X)− ln(θm;X)

= lnPrθ(X)− lnPrθm(X)

= ln
∑
z

Prθ(z)Prθ(X | z)− lnPrθm(X)

= ln
∑
z

Prθ(z)Prθ(X | z)Prθm(z | X)

Prθm(z | X)
− lnPrθm(X)

= ln
∑
z

Prθm(z | X)
Prθ(z)Prθ(X | z)

Prθm(z | X)
− lnPrθm(X)

By Jensen’s inequality :

≥
∑
z

Prθm(z | X) ln
Prθ(z)Prθ(X | z)

Prθm(z | X)
− lnPrθm(X)

=
∑
z

Prθm(z | X) ln
Prθ(z)Prθ(X | z)

Prθm(z | X)Prθm(X)

:= ∆(θ | θm).

Therefore:
ln l(θ;X) ≥ ln(θm;X) + ∆(θ | θm).

We define
L(θ | θm) = ln(θm;X) + ∆(θ | θm).

Then
ln l(θ;X) ≥ L(θ | θm)

Additionally, we observe that ∆(θm | θm) = 0, and consequently L(θm | θm) =
ln l(θm;X).
Thus, L(θ | θm) is bounded above by ln l(θ;X) and, for θ = θm, L(θ | θm) =
ln l(θ;X). Therefore, by selecting θ maximising L(θ | θm), we would achieve the
greatest possible increase in ln l(θ;X).

θm+1 = argmax
θ

L(θ | θm)

= argmax
θ

ln(θm;X) +
∑
z

Prθm(z | X) ln
Prθ(z)Prθ(X | z)

Prθm(z | X)Prθm(X)

= argmax
θ

∑
z

Prθm(z | X) lnPrθ(z)Prθ(X | z)

= argmax
θ

∑
z

Prθm(z | X) lnPrθ(X, z)

= argmax
θ

Q(θ|θm)
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A.2 Baum-Welch for MCs

The forward-backward functions For o = ℓ0 . . . ℓT a trace and an MC M, we
define the forward and the backward functions αo, βo : S × {0 . . T} → [0, 1] as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Xi = s] .

These can be calculated according to the following recurrences

αo(s, i) =

1ℓ0(ℓ(s)) · π(s) if i = 0

1ℓi(ℓ(s)) ·
∑
s′∈S

αo(s
′, i− 1) · τ(s′)(s) if 0<i≤T

βo(s, i) =

1ℓT (ℓ(s)) if i = T

1ℓi(ℓ(s)) ·
∑
s′∈S

τ(s)(s′) · βo(s
′, i+ 1) if 0≤ i<T

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · τ(s)(s′) · βo(s
′, i+ 1)∑

u∈S αo(u, i)βo(u, i)

Additionally, we have:

ln l(M; ρ) = lnπ(s0) +

|ρ|−1∑
i=0

ln τ(si)(si+1) (A.3)

The E and M steps The EM algorithm can be described as the following E and
M steps repeated until convergence:

1. (E Step) Compute Q(θ|θm) =
∑

z Prθm(z | X) lnPrθ(X, z),

2. (M Step) Set θm+1 = argmax
θ

Q(θ | θm),

where X in the set of observed data and θm the current estimated parameters.
In the context of learning an MC from a given finite set O of traces, the E and M
steps are:

1. (E Step) Compute Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln [l(M; ρ)] l(Mm; ρ).

2. (M Step) Set Mm+1 = argmax
M

Q(M | Mm).
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Let Mm = ⟨S,L, ℓ, τ, π⟩ and M = ⟨S,L, ℓ, τ̂ , π̂⟩.
First, plugging (A.3) into Q(M | Mm), we get:

Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln π̂(s0) · l(Mm; ρ)

+
∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln τ̂(si)(si+1) · l(Mm; ρ)

Now we optimise with Lagrange multipliers (lπ and lτs). Let L(M,Mm) be the
Lagrangian:

L(M,Mm) = Q(M | Mm)− lπ

(∑
s′∈S

π̂(s′)− 1

)
−
∑
s∈S

lτs

(∑
s′∈S

τ̂(s)(s′)− 1

)

Estimation of π First, we focus on the initial state distribution π:

∂L(M,Mm)

∂π̂s
=

∂Q(M | Mm)

∂π̂s
− lπ = 0

=
∂

∂π̂s

∑
o∈O

∑
ρ∈Paths(o)

ln π̂(s0)l(Mm; ρ)

− lπ = 0

=
∂

∂π̂s

(∑
o∈O

∑
s′∈S

ln π̂(s′)PrMm(X0 = s′, O|o| = o)

)
− lπ = 0

=
∑
o∈O

PrMm(X0 = s,O|o| = o)

π̂s
− lπ = 0

Hence:

π̂s =
∑
o∈O

PrMm(X0 = s,O|o| = o)

lπ
(A.4)

Furthermore:
∂L(M,Mm)

∂lπ
= −

(∑
s′∈S

π̂(s′)− 1

)
= 0 (A.5)

By plugging (A.4) into (A.5) we get:

lπ =
∑
o∈O

∑
s′∈S

PrMm(X0 = s′, O|o| = o) (A.6)

And by plugging (A.6) into (A.4):

π̂s =

∑
o∈O PrMm(X0 = s,O|o| = o)∑

o∈O
∑

s′ PrMm(X0 = s′, O|o| = o)

π̂s =

∑
o∈O PrMm(X0 = s | O|o| = o)∑

o∈O
∑

s′ PrMm(X0 = s′ | O|o| = o)
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Finally, using the previously defined coefficients:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

s′∈S γo(s′, 0)

Estimation of τ Now, we focus on the transition probability distributions τ :

∂L(M,Mm)

∂τ̂s,s′
=

∂

∂τ̂s,s′

∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln[τ̂(si)(si+1)]l(Mm; ρ)

− lτs = 0

=
∂

∂τ̂s,s′

∑
o∈O

∑
u,u′∈S

|o|−1∑
i=0

ln[τ̂u,u′ ]PrMm(Xi = u,Xi+1 = u′, O|o| = o)

− lτs = 0

=
∑
o∈O

|o|−1∑
i=0

PrMm(Xi = s,Xi+1 = s′, O|o| = o)

τ̂s,s′
− lτs = 0

Hence:

τ̂s,s′ =
∑
o∈O

|o|−1∑
i=0

PrMm(Xi = s,Xi+1 = s′, O|o| = o)

lτs
(A.7)

Furthermore:
∂L(M,Mm)

∂lτs
= −

(∑
s′∈S

τ̂(s)(s′)− 1

)
= 0 (A.8)

By plugging (A.7) into (A.8) we get:

lτs =
∑
o∈O

∑
s′∈S

|o|−1∑
i=0

PrMm(Xi = s,Xi+1 = s′, O|o| = o) (A.9)

=
∑
o∈O

|o|−1∑
i=1

PrMm(Xi = s,O|o| = o) (A.10)

And by plugging (A.10) into (A.7):

τ̂s,s′ =

∑
o∈O

∑|o|−1
i=0 PrMm(Xi = s,Xi+1 = s′, O|o| = o)∑

o∈O
∑|o|−1

i=0 PrMm(Xi = s,O|o| = o)

τ̂s,s′ =

∑
o∈O

∑|o|−1
i=0 PrMm(Xi = s,Xi+1 = s′ | O|o| = o)∑

o∈O
∑|o|−1

i=0 PrMm(Xi = s | O|o| = o)

Finally, using the previously defined coefficients:

τ̂(s)(s′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|−1
i=1 γo(s, i)

Conclusion For MCs, the Update procedure updates π and τ as follows:
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π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

τ̂(s)(s′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|−1
i=1 γo(s, t)

Remark A.2.1. One may incur in the situation where
∑

o∈O
∑|o|−1

i=1 γo(s, i) = 0,
indicating that the state s does not play a role in the observed dynamics. In this
case the update procedure leaves the distribution τ(s) unchanged.

A.3 Baum-Welch for MDPs

This Appendix Section is close to the previous one, the only difference being
the input actions.

The forward-backward functions For o = (ℓ0, a0) . . . ℓT a trace and an MDP
M, we define the forward and the backward functions αo, βo : S × {0 . . T} → [0, 1]
as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s | A0:i−1 = a0 . . ai−1] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Ai:T−1 = ai . . aT−1, Xi = s] .

These can be calculated according to the following recurrences

αo(s, i) =

1ℓ0(ℓ(s)) · π(s) if i = 0

1ℓi(ℓ(s)) ·
∑
s′∈S

αo(s
′, i− 1) · τai−1

(s′)(s) if 0<i≤T

βo(s, i) =

1ℓT (ℓ(s)) if i = T

1ℓi(ℓ(s)) ·
∑
s′∈S

τai
(s)(s′) · βo(s

′, i+ 1) if 0≤ i<T

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · τai
(s)(s′) · βo(s

′, i+ 1)∑
u∈S αo(u, i)βo(u, i)

Additionally, we have:

ln l(M; ρ) = lnπ(s0) +

|ρ|−1∑
i=0

ln τai
(si)(si+1) (A.11)
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The Lagrangian multipliers On a given finite set O of traces, the Baum-Welch
algorithm can be described as repeating the two following steps until convergence:

1. (E step) Compute Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln [l(M; ρ)] l(Mm; ρ).

2. (M step) Set Mm+1 = argmax
M

Q(M | Mm).

Let Mm = ⟨S,L, ℓ, A, {τa}a∈A, π⟩ and M = ⟨S,L, ℓ, A, {τ̂a}a∈A, π̂⟩.
First, plugging (A.11) into Q(M | Mm), we get:

Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln π̂(s0) · l(Mm; ρ)

+
∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln τ̂ai(si)(si+1) · l(Mm; ρ)

Now we optimise with Lagrange multipliers (lπ and lτa
s
). Let L(M,Mm) be

the Lagrangian:

L(M,Mm) = Q(M | Mm)− lπ

(∑
s∈S

π̂s − 1

)
−
∑
s∈S

∑
a∈A

lτa
s

(∑
u∈S

τ̂a(s)(u)− 1

)

Estimation of π This step is identical to the one for MC. Therefore, we have:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

s′∈S γo(s′, 0)

Estimation of τ Now,we focus on the transition probability distributions τa(s):

∂L(M,Mm)

∂τ̂s,a,s′
=

∂

∂τ̂s,a,s′

∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln[τ̂ai
(si)(si+1)]l(Mm; ρ)

− lτa
s
= 0

=
∂

∂τ̂s,a,s′


∑
o∈O

u,u′∈S
a′∈A

|o|−1∑
i=0

ln[τ̂u,a′,u′ ]PrMm(Xi = u,Xi+1 = u′, Ai = a′, O|o| = o)

− lτa
s
= 0

=
∑
o∈O

|o|−1∑
i=0

1a(ai)PrMm(Xi = s,Xi+1 = s′, O|o| = o)

τ̂a(s)(s′)
− lτa

s
= 0

Hence:

τ̂a(s)(s
′) =

∑
o∈O

|o|−1∑
i=0

1a(ai)PrMm(Xi = s,Xi+1 = s′, O|o| = o)

lτa
s

(A.12)
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Furthermore:
∂L(M,Mm)

∂lτa
s

= −
(∑

u∈S

τ̂a(s)(u)− 1

)
= 0 (A.13)

By plugging (A.12) into (A.13) we get:

lτa
s
=
∑
o∈O

∑
u∈S

|o|−1∑
i=0

PrMm(Xi = s,Xi+1 = u,O|o| = o) · 1a(ai) (A.14)

=
∑
o∈O

|o|−1∑
i=0

PrMm(Xi = s,O|o| = o) · 1a(ai) (A.15)

And by plugging (A.15) into (A.12):

τ̂a(s)(s
′) =

∑
o∈O

∑|o|−1
i=0 1a(ai) · PrMm(Xi = s,Xi+1 = s′, O|o| = o)∑

o∈O
∑|o|−1

i=0 1a(ai) · PrMm(Xi = s,O|o| = o)

τ̂a(s)(s
′) =

∑
o∈O

∑|o|−1
i=0 1a(ai) · PrMm(Xi = s,Xi+1 = s′ | O|o| = o)∑

o∈O
∑|o|−1

i=0 1a(ai) · PrMm(Xi = s | O|o| = o)

Finally, using the previously defined coefficients:

τ̂a(s)(s
′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′) · 1a(ai)∑
o∈O

∑|o|−1
i=0 γo(s, i) · 1a(ai)

Conclusion For MDPs, the Update procedure updates π and τ as follows:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

τ̂a(s)(s
′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′) · 1a(ai)∑
o∈O

∑|o|−1
i=0 γo(s, i) · 1a(ai)

Remark A.3.1. As for MCs, one may incur in the situation where
∑

o∈O
∑|o|−1

i=1 γo(s, i)·
1a(ai) = 0, indicating that the state s does not play a role in the observed dynamics.
In this case the update procedure leaves the distribution τa(s) unchanged.

A.4 Baum-Welch for CTMCs
The forward-backward functions For o = (ℓ0, t0) . . . ℓT a timed trace and a
CTMC M, we define the forward and the backward functions αo, βo : S×{0 . . T} →
[0, 1] as

αo(s, i) = PrM[Y0:i = ℓ0 . . ℓi, Xi = s|T0:i−1 = t0 . . ti−1] , and

βo(s, i) = PrM[Yi:T = ℓi . . ℓT |Ti:T−1 = ti . . tT−1, Xi = s] .
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These can be calculated according to the following recurrences

αo(s, i) =

1ℓ0(ℓ(s)) · π(s) if i = 0

1ℓi(ℓ(s)) ·
∑
s′∈S

αo(s
′, i− 1) · τ(s′)(s) · λs′ e

−λs′ ti if 0<i≤T

βo(s, i) =

1ℓT (ℓ(s)) if i = T

1ℓi(ℓ(s)) ·
∑
s′∈S

τ(s)(s′) · λs e
−λs ti · βo(s

′, i+ 1) if 0≤ i<T

Thus:

γo(s, i) =
αo(s, i)βo(s, i)∑

u∈S αo(u, i)βo(u, i)

ξo(s, i)(s
′) =

αo(s, i) · λs e
−λs ti · τ(s)(s′) · βo(s

′, i+ 1)∑
u∈S αo(u, i)βo(u, i)

Additionally, we have:

ln l(M; ρ) = lnπ(s0)︸ ︷︷ ︸
initial state

+

|ρ|−1∑
i=0

ln
(
λsie

−λsi
ti
)

︸ ︷︷ ︸
dwell times

+

|ρ|−1∑
i=0

ln τ(si)(si+1)︸ ︷︷ ︸
transitions

(A.16)

The Lagrangian multipliers On a given finite set O of traces, the Baum-Welch
algorithm can be described as repeating the two following steps until convergence:

1. (E step) Compute Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln [l(M; ρ)] l(Mm; ρ).

2. (M step) Set Mm+1 = argmax
M

Q(M | Mm).

Let Mm = ⟨S,L, ℓ, R, π⟩ and M = ⟨S,L, ℓ, R̂, π̂⟩. Recall that E(s) =
∑

s′∈S R(s)(s′)

and Ê(s) =
∑

s′∈S R̂(s)(s′).
We define τ(s)(s′) = R(s)(s′)/E(s), τ̂(s)(s′) = R̂(s)(s′)/Ê(s), λs = E(s) and
λ̂s = Ê(s) as above.
First, plugging (A.16) into Q(M | Mm), we get:

Q(M | Mm) =
∑
o∈O

∑
ρ∈Paths(o)

ln π̂(s0) · l(Mm; ρ)

+
∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln τ̂(si)(si+1) · l(Mm; ρ)

+
∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

ln
(
λsie

−λsi
ti
)
· l(Mm; ρ)
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Now we optimise with Lagrange multipliers (lπ and lτs). Let L(M,Mm) be
the Lagrangian:

L(M,Mm) = Q(M | Mm)− lπ

(∑
s∈S

π̂(s)− 1

)
−
∑
s∈S

lτs

(∑
s′∈S

τ̂(s)(s′)− 1

)

Estimation of π This step is identical to the one for MC. Therefore, we have:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

s′∈S γo(s′, 0)

Estimation of τ As for π, this step is identical to the one for MC. Therefore:

τ̂(s)(s′) =

∑
o∈O

∑|o|−1
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|
i=1 γo(s, i)

Estimation of λ First, we notice that:

ln
(
λse

−λst
)
= lnλs − λs t

We start as usual by deriving the Lagrangian with respect to λ̂s:

∂L(M,Mm)

∂λ̂s

=
∂Q(M | Mm)

∂λ̂s

= 0

=
∂

∂λ̂s

∑
o∈O

∑
ρ∈Paths(o)

|ρ|∑
i=0

(lnλsi − λsiti) · l(Mm; ρ)

 = 0

=
∂

∂λ̂s

∑
o∈O

∑
s′∈S

|ρ|∑
i=0

(lnλs′ − λs′ti) · PrMm(Xi = s′, O|o| = o)

 = 0

=
∑
o∈O

|o|∑
i=0

(
1

λs
− ti

)
PrMm(Xi = s,O|o| = o) = 0

Hence:

λ̂s =

∑
o∈O

∑|o|
i=0 PrMm(Xi = s,O|o| = o)∑

o∈O
∑|o|

i=0 ti PrMm(Xi = s,O|o| = o)

λ̂s =

∑
o∈O

∑|o|
i=0 PrMm(Xi = s | O|o| = o)∑

o∈O
∑|o|

i=0 ti PrMm(Xi = s | O|o| = o)

Finally, using the previously defined coefficients:

λ̂s =

∑
o∈O

∑|o|
i=0 γo(s, i)∑

o∈O
∑|o|

i=0 ti γo(s, i)
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Estimation of R We know that

R̂(s)(s′) = τ̂(s)(s′) · Ê(s) = τ̂(s)(s′) · λ̂(s)

Then

R̂(s)(s′) =

∑
o∈O

∑|o|
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|
i=1 γo(s, i)

·
∑

o∈O
∑|o|

i=0 γo(s, i)∑
o∈O

∑|o|
i=0 ti γo(s, i)

Hence

R̂(s)(s′) =

∑
o∈O

∑|o|
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|
i=0 ti γo(s, i)

Conclusion Given a set of timed traces O, the Update procedure updates π
and R as follows:

π̂(s) =

∑
o∈O γo(s, 0)∑

o∈O
∑

u∈S γo(u, 0)

R̂(s)(s′) =

∑
o∈O

∑|o|
i=0 ξo(s, i)(s

′)∑
o∈O

∑|o|
i=0 ti γo(s, i)
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Appendix B

Proof of Theorem 6.4.1

Let first recall the context and the Theorem.

g(x|xm) =
∑n

i=1 g(xi|xm) where

g(xi|xm) =
∑

ω∈ x−→
ξωaωi lnxi −

∑
s

∑
ω∈s

x−→·

fω(xm)aωiγs
aω(xmi)aω

xaω
i . (B.1)

Here the coefficients γs and ξω are respectively defined as

γs =
∑

o∈O
∑|o|−1

i=0 γo(s, i)
(
[[ti ̸= ∅]]ti + [[ti = ∅]]Em(s)−1

)
(B.2)

ξω =
∑

o∈O
∑|o|−1

i=0 ξo(ω, i) (B.3)

Theorem (6.4.1). The surrogate function g(x|xm) minorises ln l(x) at xm up to
an irrelevant constant.

The art of devising an MM algorithm revolves around intelligent choices of
minorising functions, which are used to identify a surrogate function. The con-
struction of the surrogate function g(x|xm) (cf. Equation B.1) relies on three in-
equalities.

The first basic minorisation builds upon Jensen’s inequality. For xi > 0, yi > 0
(i = 1 . . . n),

ln

(
n∑

i=1

xi

)
≥

n∑
i=1

yi∑n
j=1 yj

ln

(∑n
j=1 yj

yi
xi

)
(B.4)

Note that the above inequality becomes an equality whenever xi = yi for all i =
1 . . . n. Remarkably, the EM algorithm [21] is a special case of the MM algorithm
which revolves around the above basic minorisation when additionally the values
xi and yi describe a probability distribution, i.e.,

∑n
i=1 xi = 1 and

∑n
i=1 yi = 1.

Our second basic minorisation derives from the strict concavity of the logarithm
function, which implies for x, y > 0 that

− lnx ≥ 1− ln y − x/y (B.5)
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with equality if and only if x = y. Note that the above inequality restates the
supporting hyperplane property of the convex function − lnx. Notably, the above
minorisation is used in [133] for finding rankings in the Bradley–Terry model.

The third basic minorisation [23] derives from the generalised arithmetic-geometric
mean inequality which implies, for positive xi, yi, and αi and α =

∑n
i=1 αi, that

−
n∏

i=1

xαi
i ≥ −

(
n∏

i=1

yαi
i

)
n∑

i=1

αi

α

(
xi

yi

)α

. (B.6)

Note again that equality holds when all xi = yi.

Theorem 6.4.1. For convenience, we establish the result for a pCTMC P that sat-
isfies the following assumptions:

(A) there is at most one transition between each pair of states;

(B) for each transition ω ∈ →, the map fω is either a constant (i.e., fω(x) = cω
with cω ≥ 0) or of the form fω(x) = cω

∏n
i=1 x

aωi
i where cω > 0 and aω > 0.

Assumption (B) does not restrict the generality of the formulation. Indeed, a
transition ω = (s

fω−→ s′) where fω(x) =
∑m

j=1 cj
∏n

i=1 x
aji

i can be replaced by m

transitions of the form ωi = (s
fωi−−→ s′) where fωi

(x) = cj
∏n

i=1 x
aji

i (j = 1 . . .m).
Note that in case cj = 0 or aωi

= 0 the resulting map simplifies to a constant.

As for (A), let us denote by m(s) = maxs′∈S |{ω | ω = (s′
f−→ s)}| the maximum

number of transitions to s from a single state s′ ∈ S. We construct a pCTMC as
follows: each state s is duplicated m(s) times, and each state s′ having more than
one transition to s will redirect each transition to a distinct copy of s. Below is
shown an example of such construction. To simplify the drawing we omitted the
transition rates. Instead, the transitions that are redirected are highlighted with
different colors.

s0

s1

s3

s2 s4 s0

s1

s3

s2

s2

s2

s4

s4

Note that the construction described above ensures that any state s is bisimilar
to any of its copies. As a consequence, for any valuation of the parameters, the
two chains have the same likelihood value.

Starting from the log-likelihood function, we proceed with the following minori-
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sation steps

ln l(x) =
∑
o∈O

ln l(P(x); o) =
∑
o∈O

ln

 ∑
ρ∈Paths(o)

l(P(x); ρ)


≥
∑
o∈O

∑
ρ∈Paths(o)

l(P(xm); ρ)

l(P(xm); o)
ln

(
l(P(xm); o)

l(P(xm); ρ)
· l(P(x); ρ)

)
(by (B.4))

∼=
∑
o∈O

∑
ρ∈Paths(o)

l(P(xm), o; ρ) ln (l(P(x); ρ)) (up-to const)

using Equation (6.3) we simplify the above to

=
∑
o∈O

∑
ρ∈Paths(o)

l(P(xm), o; ρ) ln

π(s0)

|ρ|−1∏
i=0

R(si, si+1)

E(si)
·
∏

i∈T (o)

E(si)e
−E(si)ti


=
∑
o∈O

∑
ρ∈Paths(o)

|ρ|−1∑
i=0

l(P(xm), o; ρ)
(
lnπ(s0) + lnR(si, si+1) (B.7)

− [[ti=∅]] lnE(si)− [[ti ̸=∅]]E(si)ti
)

By (B.5) we minorise − lnE(si) up-to some constant as −E(si)/Em(si). Let
δs(t) = ([[ti=∅]]Em(s)−1 + [[ti ̸=∅]]ti), then the overall minorisation simplifies to

≥
∑
o∈O

|ρ|−1∑
t=0

∑
ρ∈Paths(o)

l(P(xm), o; ρ)
(
lnπ(s0) + lnR(si, si+1)− E(si)δsi(t)

)

=
∑
o∈O

|ρ|−1∑
t=0

(∑
ω∈→

ξω(t) ln fω(x)−
∑
s

γs(t)δs(t)E(s)

)
(def. ξω(t) and γs(t))

∼=
∑

ω∈ x−→
ξω ln fω(x) +

∑
s

γs(−E(s))

(rearrange up-to const, using (B.2) and (B.3))

∼=
n∑

i=1

∑
ω∈ x−→

ξωaωi lnxi +
∑
s

γs(−E(s)) ((B), up-to const)

≥
n∑

i=1

 ∑
ω∈ x−→

ξωaωi lnxi −
∑
s

∑
ω∈s

x−→·

fω(xm)aωiγs
aωx

aω
mi

xaω
i

 (**)

= g(x|xm) (by (B.1))
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Where (**) is justified by the following minorisation of −E(s)

− E(s) =
∑

ω∈s→·
−fω(x) ∼=

∑
ω∈s

x−→·

cω

(
−

n∏
i=1

xaωi
i

)
(up-to const, by ((B)))

≥
∑

ω∈s
x−→
−cω

(
n∏

i=1

xaωi
mi

)
n∑

i=1

aωi

aω

(
xi

xmi

)aω

(by (B.6))

≥ −
n∑

i=1

∑
ω∈s

x−→

fω(xm)aωi

aω xaω
mi

xaω
i (rearranging)

As shown above, there exists a (non-negative) constant c such that the surrogate
function g(x|xm) + c minorises ln l(x) at xm.



Appendix C

Scalability evaluation over
training set size

We repeat here the experiment presented in Section 7.5 but this time with
training set two times bigger.

Utilising Jajapy, we learn MCs ranging from 10 to 200 states (models with 100
to 40,000 parameters). Training sets comprise 2,000 traces of length 10; the initial
hypothesis size matches the SUL. Results are depicted in Fig. C.1.

Comparing with prior Section 7.5, we note slower and more memory-intensive
learning from a doubled training set. Intriguingly, doubling trace numbers cuts
loglikelihood distance in half. In essence, learning from an x times larger set yields
a model x times closer to the SUL (in loglikelihood distance).
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Figure C.1 – Jajapy running time, memory usage and loglikelihood distance w.r.t.
the number of parameters of the hypothesis.
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