
An MM Algorithm to Estimate
Parameters in Continuous-Time Markov

Chains

Giovanni Bacci1(B) , Anna Ingólfsdóttir2, Kim G. Larsen1,
and Raphaël Reynouard2

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
{giovbacci,kgl}@cs.aau.dk

2 Department of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
{annai,raphal20}@ru.is

Abstract. Prism and Storm are popular model checking tools that
provide a number of powerful analysis techniques for Continuous-time
Markov chains (CTMCs). The outcome of the analysis is strongly depen-
dent on the parameter values used in the model which govern the timing
and probability of events of the resulting CTMC. However, for some
applications, parameter values have to be empirically estimated from
partially-observable executions.

In this work, we address the problem of estimating parameter values of
CTMCs expressed as Prismmodels from a number of partially-observable
executions which might possibly miss some dwell time measurements. The
semantics of the model is expressed as a parametric CTMC (pCTMC), i.e.,
CTMCwhere transition rates are polynomial functions over a set of param-
eters. Then, building on a theory of algorithms known by the initials MM,
for minorization–maximization, we present an iterative maximum likeli-
hood estimation algorithm for pCTMCs. We present an experimental eval-
uation of the proposed technique on a number of CTMCs from the quan-
titative verification benchmark set. We conclude by illustrating the use of
our technique in a case study: the analysis of the spread of COVID-19 in
presence of lockdown countermeasures.

Keywords: MM Algorithm · Continuous-time Markov chains ·
Maximum likelihood estimation

1 Introduction

A continuous-time Markov chain (CTMC) is a model of a dynamical system
that, upon entering some state, remains in that state for a random real-valued
amount of time—called the dwell time or sojourn time—and then transitions

K.G. Larsen and G. Bacci were supported by the S40S Villum Investigator Grant
(37819) from Villum Fonden; R. Reynouard and A. Ingólfsdóttir were supported by
the project Learning and Applying Probabilistic Systems (206574-051) of the Icelandic
Research Fund.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Jansen and M. Tribastone (Eds.): QEST 2023, LNCS 14287, pp. 82–100, 2023.
https://doi.org/10.1007/978-3-031-43835-6_6

An MM Algorithm to Estimate Parameters in CTMCs 83

Fig. 1. (Left) SIR model with lockdown from [36], (Right) Semantically equivalent
formulation of the model to the left where different individuals are modeled as distinct
modules interacting with each other via synchronization.

probabilistically to another state. CTMCs are popular models in performance
and dependability analysis. They have wide application and constitute the under-
lying semantics for real-time probabilistic systems such as queuing networks [33],
stochastic process algebras [24], and calculi for systems biology [13,29].

Model checking tools such as Prism [30] and Storm [14] provide a number of
powerful analysis techniques for CTMCs. Both tools accept models written in the
Prism language, a state-based language based on [1] that supports compositional
design via a uniform treatment of synchronous and asynchronous components.

For example, consider the Prism model depicted in Fig. 1 (left) implement-
ing a variant of the Susceptible-Infected-Recovered (SIR) model proposed in [36]
to describe the spread of disease in presence of lockdown restrictions. The model
distinguishes between three types of individuals: susceptible, infected, and recov-
ered respectively associated with the state variables s, i, and r. Susceptible
individuals become infected through contact with another infected person and
can recover without outside interference. The SIR model is parametric in beta,
gamma, and plock. beta is the infection coefficient, describing the probability of
infection after the contact of a susceptible individual with an infected one; gamma
is the recovery coefficient, describing the rate of recovery of an infected individ-
ual (in other words, 1/gamma is the time one individual requires to recover); and
plock ∈ [0, 1] is used to scale down the infection coefficient modeling restrictions
to reduce the spread of disease.

Clearly, the outcome of the analysis of the above SIR model is strongly depen-
dent on the parameter values used, as they govern the timing and probability
of events of the CTMC describing its semantics. However, in some application
domains, parameter values have to be empirically evaluated from a number of

84 G. Bacci et al.

partially-observable executions of the model. A paradigmatic example is the
modeling pipeline described in [36], where the parameters of the SIR model in
Fig. 1 (left) are estimated based on a definition of the model as ODEs, and
later used in an approximation of the original SIR model designed to reduce the
state space of the SIR model in Fig. 1 (left). Such modeling pipelines require
high technical skills, are error-prone, and are time-consuming, thus limiting the
applicability and the user base of model checking tools.

In this work, we address the problem of estimating parameter values of
CTMCs expressed as Prism models from a number of partially-observable exe-
cutions. The expressive power of the Prism language brings two technical chal-
lenges: (i) the classic state-space explosion problem due to modular specification,
and (ii) the fact that the transition rates of the CTMCs result from the algebraic
composition of the rates of different (parallel) modules which are themselves
defined as arithmetic expressions over the parameters (cf. Fig. 1). We address
the second aspect of the problem by considering a class of parametric CTMCs
(pCTMC) [10,21], which are CTMCs where transition rates are polynomial func-
tions over a fixed set of parameters. In this respect, pCTMCs have the advantage
to cover a rich subclass of Prism models and to be closed under the operation
of parallel composition implemented by the Prism language.

Following the standard approach, we pursue the maximum likelihood esti-
mate (MLE), i.e., we look for the parameter values that achieve the maximum
joint likelihood of the observed execution sequences. However, given the non-
convex nature of the likelihood surface, computing the global maximum that
defines the MLE is computationally intractable [42].

To deal with this issue we employ a theoretical iterative optimization prin-
ciple known as MM algorithm [31,32]. The well-known EM algorithm [15] is an
instance of MM optimization framework and is a versatile tool for constructing
optimization algorithms. MM algorithms are typically easy to design, numeri-
cally stable, and in some cases amenable to accelerations [25,44]. The versatility
of the MM principle consists in the fact that is built upon a simple theory of
inequalities, allowing one to derive optimization procedures. The MM principle
is useful to derive iterative procedures for maximum likelihood estimation which
increase the likelihood at each iteration and converge to some local optimum.

The main technical contribution of the paper consists in devising a novel
iterative maximum likelihood estimation algorithm for pCTMCs. Crucially, our
technique is robust to missing data. In contrast with [18,41], where state labels
and dwell times are assumed to be observable at each step of the observations
while only state variables are hidden, our estimation procedure accepts observa-
tions to have information to be missing at some steps.

Notably, when state labels and dwell times are observable and only state
variables are hidden, our learning procedure results in a generalization of the
Baum-Welch algorithm [38]—an EM algorithm that estimates transition proba-
bilities in hidden Markov models—to pCTMCs.

We demonstrate the effectiveness of our estimation procedure on a case study
taken from [36] and show that our technique can be used to simplify modeling

An MM Algorithm to Estimate Parameters in CTMCs 85

pipelines that involve a number of modifications of the model—possibly intro-
ducing approximations—and the re-estimation of its parameters.

2 Preliminaries and Notation

We denote by R, Q, and N respectively the sets of real, rational, and natural
numbers, and by Σn, Σ∗ and, Σω respectively the set of words of length n ∈ N,
finite length, and infinite length, built over the finite alphabet Σ.

We use D(Ω) to denote the set of discrete probability distributions on Ω,
i.e., functions μ : Ω → [0, 1], such that μ(X) = 1, where μ(E) =

∑
x∈E μ(x)

for E ⊆ X. For a proposition p, we write [[p]] for the Iverson bracket of p, i.e.,
[[p]] = 1 if p is true, otherwise 0.

A labelled continuous-time Markov chain (CTMC) is defined as follows.

Definition 1. A labelled CTMC is a tuple M = (S,R, s0, �) where S is a finite
set of states, R : S × S → R≥0 is the transition rate function, s0 ∈ S the initial
states, and � : S → 2AP is a labelling function which assigns to each state a
subset of atomic propositions that the state s satisfies.

The transition rate function assigns rates r = R(s, s′) to each pair of states
s, s′ ∈ S which are to be seen as transitions of the form s

r−→ s′. A transition
s

r−→ s′ can only occur if r > 0. In this case, the probability of this transition to
be triggered within τ ∈ R>0 time-units is 1 − e−r τ . When, from a state s, there
are more than one outgoing transition with positive rate, we are in presence
of a race condition. In this case, the first transition to be triggered determines
which label is observed as well as the next state of the CTMC. According to
these dynamics, the time spent in state s before any transition occurs, called
dwell time, is exponentially distributed with parameter E(s) =

∑
s′∈S R(s, s′),

called exit-rate of s. A state s is called absorbing if E(s) = 0, that is, s has no
outgoing transition. Accordingly, when the CTMC ends in an absorbing state
it will remain in the same state indefinitely. The probability that the transition
s

r−→ s′ is triggered from s is r/E(s) and is independent from the time at which
it occurs. Accordingly, from the CTMC M, we construct a (labelled) discrete-
time Markov chain emb(M) = (S, P, s0, �) with transition probability function
P : S × S → [0, 1] defined as

P (s, s′) =

⎧
⎪⎨

⎪⎩

R(s, s′)/E(s) if E(s) �= 0
1 if E(s) = 0 and s = s′

0 otherwise

Remark 1. A CTMC can be equivalently described as a tuple (S,→, s0, �) where
→ ⊆ S ×R≥0×S is a transition relation. The transition rate function R induced
by → is obtained as, R(s, s′) =

∑
{r | s

r−→ s′} for arbitrary s, s′ ∈ S.

An infinite path of a CTMC M is a sequence s0τ0s1τ1s2τ2 · · · ∈ (S × R>0)ω

where R(si, si+1) > 0 for all i ∈ N. A finite path is a sequence s0τ0 · · · sk−1τk−1sk

86 G. Bacci et al.

where R(si, si+1) > 0 and τi ∈ R>0 for all i ∈ {1, . . . , k −1} and sk is absorbing.
The meaning of a path is that the system started in state s0, where it stayed
for time τ0, then transitioned to state s1 where it stayed for time τ1, and so on.
For a finite path the system eventually reaches an absorbing state sk, where it
remains. We denote by PathM the set of all (infinite and finite) paths of M.
The formal definition of the probability space over PathM induced by M can
be given by following the classical cylinder set construction (see e.g., [6,28]).

Finally, we define the random variables Si, Li, and Ti (i ∈ N) that respec-
tively indicate the i-th state, its label, and i-th dwell time of a path.

The MM Algorithm. The MM algorithm is an iterative optimization method.
The acronym MM has a double interpretation: in minimization problems, the
first M stands for majorize and the second for minimize; dually, in maximization
problems, the first M stands for minorize and the second for maximize. In this
paper we only focus on maximizing an objective function f(x), hence we tailor
the presentation of the general principles of the MM framework to maximization
problems. The MM algorithm is based on the concept of surrogate function. A
surrogate function g(x | xm) is said to minorize a function f(x) at xm if

f(xm) = g(xm | xm) , (1)
f(x) ≥ g(x | xm) for all x �= xm . (2)

In the MM optimization framework, we maximize the surrogate minorizing func-
tion g(x | xm) rather than the actual function f(x). If xm+1 denotes the maxi-
mum of the surrogate g(x | xm), then the next iterate xm+1 forces f(x) uphill,
Indeed, the inequalities

f(xm) = g(xm | xm) ≤ g(xm+1 | xm) ≤ f(xm+1)

follow directly from the definition of xm+1 and the axioms (1) and (2).
Because piecemeal composition of minorization works well, the derivations

of surrogate functions are typically achieved by applying basic minorizations to
strategic parts of the objective function, leaving other parts untouched. Finally,
another aspect that can simplify the derivation of MM algorithms comes from
the fact that the iterative maximization procedure hinges on finding xm+1 =
arg maxx g(x | xm). Therefore, g(x | xm) can be replaced by any other surrogate
function g′(x | xm) satisfying arg maxx g(x | xm) = arg maxx g′(x | xm) for all
xm. This is for instance the case when g(x | xm) and g′(x | xm) are equal up to
some (irrelevant) constant c, that is g(x | xm) = g′(x | xm) + c.

3 Parametric Continuous-Time Markov Chains

As mentioned in the introduction, the Prism language offers constructs for the
modular design of CTMCs within a uniform framework that represents syn-
chronous and asynchronous module interaction. For example, consider the Prism
models depicted in Fig. 1. The behavior of each module is described by a set of

An MM Algorithm to Estimate Parameters in CTMCs 87

commands which take the form [action] guard → rate : update representing a
set of transitions of the module. The guard is a predicate over the state variables
in the model. The update and the rate describe a transition that the module can
make if the guard is true. The command optionally includes an action used to
force two or more modules to make transitions simultaneously (i.e., to synchro-
nize). For example, in the model in Fig. 1 (right), in state (50, 20, 5) (i.e., s = 50,
i = 20, and r = 5), the model can move to state (49, 21, 5) by synchronizing
over the action infection. The rate of this transition is equal to the product
of the individual rates of each module participating in an infection transition,
which in this case amounts to 0.01 · beta · plock. Commands that do not have
an action represent asynchronous transitions that can be taken independently
(i.e., asynchronously) from other modules.

By default, all modules are combined following standard parallel composition
in the sense of the parallel operator from Communicating Sequential Processes
algebra (CPS), that is, modules synchronize over all their common actions. The
Prism language offers also other CPS-based operators to specify the way in
which modules are composed in parallel.

Therefore, a parametric representation of a CTMC described by a Prism
model shall consider transition rate expressions which are closed under finite
sums and finite products: sums deal with commands with overlapping guards and
updates, while products take into account synchronization. In line with [10,21]
we employ parametric CTMCs (pCTMCs).

Let x = (x1, . . . , xn) be a vector of parameters. We write E for the set of
polynomial maps f : Rn

≥0 → R≥0 of the form f(x) =
∑m

i=1 bi

∏n
j=1 x

aij

j , where
bi ∈ R≥0 and aij ∈ N for i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. E is a commutative
semiring satisfying the above-mentioned requests for transition rate expressions.

Definition 2. A pCTMC is a tuple P = (S,R, s0, �) where S, s0, and � are defined
as for CTMCs, and R : S × S → E is a parametric transition rate function.

Intuitively, a pCTMC P = (S,R, s0, �) defines a family of CTMCs arising by
plugging in concrete values for the parameters x. Given a parameter evaluation
v ∈ R

n
≥0, we denote by P(v) the CTMC associated with v, and R(v) for its rate

transition function. Note that by construction R(v)(s, s′) ≥ 0 for all s, s′ ∈ S,
therefore P(v) is a proper CTMC.

As for CTMCs, parametric transitions rate functions can be equivalently
described by means of a transition relation → ⊆ S×E ×S, where the parametric
transition rate from s to s′ is R(s, s′)(x) =

∑
{f(x) | s

f−→ s′}.

Example 1. Consider the model in Fig. 1 parametric in beta, gamma, and plock.
The semantics of this model is a pCTMC with states S = {(s, i, r) | s, i, r ∈
{0, . . . , 105}} and initial state (99936, 48, 16). For example, the initial state has
two outgoing transitions: one that goes to (99935, 49, 16) with rate 47.96928 ·
beta·plock, and the other that goes to (99935, 48, 17) with rate 49·gamma·plock.

One relevant aspect of the class of pCTMCs is the fact that it is closed
under parallel composition in the sense described above. This justifies the study

88 G. Bacci et al.

of parameter estimation of Prism models from observed data via maximum
likelihood estimation for pCTMCs.

4 Estimating Parameters from Partial Observations

In this section, we present an algorithm to estimate the parameters of a pCTMC
P from a collection of i.i.d. observation sequences O = o1, . . . ,oJ . Notably, the
algorithm is devised to be robust to missing dwell time values. In this line,
we consider partial observations of the form p0:k, τ0:k−1 representing a finite
sequence p0τ0 · · · τk−1pk of consecutive dwell time values and atomic propositions
observed during a random execution of M. Here, for uniformity of treatment,
the dwell times τt that are missing are denoted as τt = ∅.

We follow a maximum likelihood approach: the parameters x are estimated
to maximize the joint likelihood L(P(x)|O) =

∏J
j=1 l(oj |P(x)) of the observed

data. When P and O are clear from the context, we write L(x) for the joint
likelihood and l(o|x) for the likelihood of the observation o.

According to the assumption that some dwell time values may be missing,
the likelihood of a partial observation o = p0:k, τ0:k−1 for a generic CTMC M is

l(o|M) =
∑

s0:k

P [S0:k = s0:k, L0:k 	 p0:k|M] · l(S0:k = s0:k, T0:k−1 = τ0:k−1|M)

=
∑

s0:k

(

[[�(s0:k) 	 p0:k]]
k−1∏

t=0

R(st, st+1)/E(st)

) ⎛

⎝
∏

t∈T (o)

E(st) e−E(st)τt

⎞

⎠ , (3)

where T (o) = {t | 1 ≤ t < k, τt �= ∅} denotes the subset of indices of the
observation o that correspond to actual dwell time measurement.

Our solution to the maximum likelihood estimation problem builds on the
MM optimization framework [31,32]. In this line, our algorithm starts with an
initial hypothesis x0 and iteratively improves the current hypothesis xm, in the
sense that the likelihood associated with the next hypothesis xm+1 enjoys the
inequality L(xm) ≤ L(xm+1). The procedure terminates when the improvement
does not exceed a fixed threshold ε, namely when L(xm) − L(xm−1) ≤ ε.

Before proceeding with the formulation of the surrogate function, we find it
convenient to introduce some notation. Let P = (S,→, s0, �), we write fρ for the
rate function of a transition ρ ∈ →, and write s → · for the set of transitions
departing from s ∈ S.

Without loss of generality, we assume that the rate function fρ of a transition
is either a constant map, i.e., fρ(x) = cρ for some cρ ≥ 0 or a map of the form
fρ(x) = cρ

∏n
i=1 x

aρi

i for some cρ > 0 and aρi > 0 for some i ∈ {1, . . . , n}; we
write aρ for

∑n
i=1 aρi. We denote by c−→ the subset of transitions with constant

rate function and x−→ for the remaining transitions.

An MM Algorithm to Estimate Parameters in CTMCs 89

To maximize L(x) we propose to employ an MM algorithm based on the
following surrogate function g(x|xm) =

∑n
i=1 g(xi|xm) where

g(xi|xm) =
∑

ρ∈ x−→
ξρaρi ln xi −

∑

s

∑

ρ∈s
x−→·

fρ(xm)aρiγs

aρ(xmi)aρ
x

aρ

i . (4)

Here the coefficients γs and ξρ are respectively defined as

γs =
∑J

j=1

∑kj−1
t=0 γj

s(t)
(
[[τ j

t �= ∅]]τ j
t + [[τ j

t = ∅]]Em(s)−1
)

(5)

ξρ =
∑J

j=1

∑kj−1
t=0 ξj

ρ(t) (6)

where γj
s(t) denotes the likelihood that having observed oj on a random execu-

tion of P(xm) the state St = s; and ξj
ρ(t) is the likelihood that for such random

execution the transition performed from state St is ρ.
The following theorem states that the surrogate function g(x|xm) is a

minorizer of the log-likelihood relative to the observed dataset O.

Theorem 1. The surrogate function g(x|xm) minorizes ln L(x) at xm up to an
irrelevant constant.

By Theorem 1 and the fact that the logarithm is an increasing function, we
obtain that the parameter valuation that achieves the maximum of g(x|xm)
improves the current hypothesis xm relative to likelihood function L(x).

Corollary 1. Let xm+1 = arg maxx g(x|xm), then L(xm) ≤ L(xm+1).

The surrogate function g(x|xm) is easier to maximize than L(x) because its
parameters are separated. Indeed, maximization of g(x|xm) is done by point-wise
maximization of each univariate function g(xi|xm). This has two main advan-
tages: first, it is easier to handle high-dimensional problems [31,32]; second, one
can choose to fix the value of some parameters and perform the maximization
of g(x|xm) only on the corresponding subexpressions g(xi|xm).

The maxima of g(xi|xm) are found among the non-negative roots1 of the
polynomial function Pi : R → R

Pi(y) =
∑

s

∑

ρ∈s
x−→

fρ(xm)aρiγs

(xmi)aρ
yaρ −

∑

ρ∈ x−→
ξρaρi (7)

Remark 2. There are some cases when (7) admits a closed-form solution. For
instance, when the parameter index i satisfies the property ∀ρ ∈ x−→. aρi > 0 =⇒
aρ = C for some constant C ∈ N, then maximization of g(xi|xm) leads to the
following update

x(m+1)i =

[
(xmi)C

∑
ρ∈ x−→ ξρaρi

∑
s

∑
ρ∈s

x−→ fρ(xm)aρiγs

]1/C

1 Note that Pi always admits non-negative roots. Indeed, Pi(0) ≤ 0 and Pi(M) > 0
for M > 0 sufficiently large. Therefore, by the intermediate value theorem, there
exists y0 ∈ [0, M) such that Pi(y0) = 0.

90 G. Bacci et al.

A classic situation when the above condition is fulfilled occurs when all transi-
tions ρ where xi appear (i.e., aρi > 0), the transition rate is fρ(x) = cρxi (i.e.,
aρi = aρ = 1). In that case, the above equation simplifies to

x(m+1)i =

∑
ρ∈ x−→ ξρ

∑
s

∑
ρ∈s

x−→ cργs

For example, the pCTMC associated with the SIR models in Fig. 1 satisfies
the former property for all parameters, because all transition rates are expres-
sions either of the form c · plock · beta or the form c · plock · gamma for some
constant c > 0. Furthermore, if we fix the value of the parameter plock the
remaining parameters satisfy the latter property. In Sect. 6, we will take advan-
tage of this fact for our calculations. �

Finally, we show how to compute γj
s(t) and ξj

ρ(t) w.r.t. the observation oj =
pj
0τ

j
0 · · · τ j

kj−1p
j
kj

by using standard forward and backward procedures. We define
the forward function αj

s(t) and the backward function βj
s(t) respectively as

αj
s(t) = l(L0:t 	 pj

0:t, T0:t = τ j
0:t, St = s|P(xm)) , and

βj
s(t) = l(Lt+1:kj

	 pj
t+1:kj

, Tt+1:kj−1 = τ j
t+1:kj−1|St = s,P(xm)) .

These can be computed using dynamic programming according to the following
recurrences. Let P(xm) = (S,R, s0, �), then

αj
s(t) =

{
[[s = s0]]ωj

s(t) if t = 0
ωj

s(t)
∑

s′∈S
R(s′,s)
E(s′) αj

s′(t − 1) if 0 < t ≤ kj

(8)

βj
s(t) =

{
1 if t = kj
∑

s′∈S
R(s,s′)
E(s) βj

s′(t + 1)ωj
s′(t + 1) if 0 ≤ t < kj

(9)

where

ωj
s(t) =

{
[[�(s) ∈ pj

t]]E(s)e−E(s)τj
t if 0 ≤ t < kj and τ j

t �= ∅
[[�(s) ∈ pj

t]] if t = kj or τ j
t = ∅.

(10)

Finally, for s ∈ S and ρ = (s
fρ−→ s′), γj

s(t) and ξj
ρ(t) are related to the

forward and backward functions as follows

γj
s(t) =

αj
s(t)βj

s(t)
∑

s′∈S αj
s′(t)βj

s′(t)
, ξj

ρ(t) =
αj

s(t)fρ(xm)ωj
s′(t + 1)βj

s′(t + 1)
E(s)

∑
s′′∈S αj

s′′(t)βj
s′′(t)

. (11)

The Case of Non-timed Observations. Consider the limit situation when dwell
time variables are not observable (i.e., τ j

t = ∅ for all j = 1 . . . J and t =
1 . . . kj − 1). Under this assumption, two CTMCs M1 and M2 having the same
embedded Markov chain satisfy L(M1|O) = L(M2|O). In other words, when

An MM Algorithm to Estimate Parameters in CTMCs 91

dwell time variables are not observable the MLE objective does not fully capture
the continuous-time aspects of the model under estimation.

The next section provides experimental evidence that, when the number of
parametric transitions is sufficiently small relative to that of constant transitions,
our algorithm can hinge on the value of the transition rates that are fixed, leading
the procedure to converge to the real parameter values.

5 Experimental Evaluation

We implemented the algorithm from Sect. 4 as an extension of the Jajapy Python
library [39], which has the advantage of being compatible with Prism models. In
this section, we present an empirical evaluation of the efficiency of our algorithm
as well as the quality of their outcome. To this end, we employ a selection of
CTMCs from the QComp benchmark set [22]. Experiments on each model have
been designed according to the following setup.

For each model, we selected a set of parameters to be estimated as well as
the set of observable atomic propositions2. We then estimated the parameter
values from a training set consisting of 100 observation sequences of length 30,
generated by simulating the original benchmark model. After the estimation, we
verify all the formulas associated with the given benchmark model and compare
the result with the expected one.

We perform experiments both using timed and non-timed observations. Each
experiment is repeated 10 times by randomly re-sampling the initial parameter
values x0 in the range [0.00025, 0.0025]. We annotate the running time, the
relative error δi for each parameter xi, and the relative error Φi for each formula3.

Table 1. Performance comparison on selected QComp benchmarks [22].

Model |S| |→| Timed Observations Non-timed Observations

Time(s) Iter avg δ avg Φ Time(s) Iter avg δ avg Φ

polling 240 800 136.430 4 0.053 0.421 33.743 12 1.000 7.146

cluster 276 1120 132.278 3 0.089 1.293 279.853 12 0.313 3.827

tandem 780 2583 1047.746 3 0.043 0.544 4302.197 74 0.161 1.354

philosophers (i) 1065 4141 2404.803 3 0.043 0.119 2232.706 6 0.263 0.235

philosophers (ii) 1065 4141 9865.645 12 0.032 0.026 33265.151 200 0.870 2.573

Table 1 reports the aggregated results of the experiments. The columns |S|
and |→| provide respectively the number of states and transitions of the model;

2 The models are available at https://github.com/Rapfff/MM-PCTMC-benchmark-
models. The source files contain a description of the parameters and what is observ-
able.

3 The relative error is |e − r|/|r|, where e (resp. r) is the estimated (resp. real) value.

92 G. Bacci et al.

the columns “Time” and “Iter” respectively report the average running time4

and number of iterations; and the columns “avg δ” and “avg Φ” respectively
report the average relative error of the estimated parameters and model check-
ing outcomes. Unsurprisingly, the quality of the estimation is higher for timed
observations. Despite in most cases the initial parameter valuation x0 being
picked far from the real parameter values, our method is capable to get close
to the expected parameter values by using relatively few observation sequences.
Most of the formulas employed in the experiments compute expected accumu-
lated rewards for a time horizon exceeding that of the used training set, as a
consequence, also the error tends to build up. The issue can be tamed by having
longer observations in the training set. Notably, for timed observations, each
iteration is more expensive than non-timed ones, but the additional overhead is
largely compensated by a consistently smaller number of iterations.

To understand how, for non-timed observation, the quality of the estimation
varies based on the number of constant transitions we ran our algorithm on two
variants of the philosophers model: (i) with the variable gammax as a constant;
and (ii) with gammax as a parameter. The algorithm clearly benefits from the
presence of constant transitions and it converges way faster to better estimates.

Figure 2 reports the results of the experiments performed on the tandem
queueing network model from [23] for different sizes of the queue. Each exper-
iment was repeated 10 times by randomly re-sampling the initial valuation x0

in the interval [0.1, 5.0]. Accordingly, measurements are presented together with
their respective error bars. The graph of the running time (cf. Fig. 2 bottom)
follows a quadratic curve in the number of states both for timed and non-timed
observations. However, for non-timed observations, the variance of the measured
running times tends to grow with the size of the model. Figure 2 (top) shows
how the L1-norm (resp. L∞-norm) of the vector δ = (δi) may vary for different
size of the model. The variance of the measured relative errors is larger in the
experiments performed with non-timed observations. Notably, for timed observa-
tions, the quality of the estimation remained stable despite the size of the model
increased relative to the size of the training set. This may be explained by the
fact that, in the tandem model, the parameters occur in many transitions.

6 Case Study: SIR Modeling of Pandemic

In this section, we take as a case study the modeling pipeline proposed by
Milazzo [36] for the analysis and simulation in Prism of the spread of COVID-
19 in presence of lockdown countermeasures. The modeling pipeline includes: (i)
parameter estimation from real data based on a modified SIR model described
by means of a system of ODEs; (ii) encoding of the modified SIR model into as
a Prism model; and (iii) stochastic simulation and model checking with Prism.

The model devised in step (ii) is depicted in Fig. 1 (left). However, to perform
the analysis, Milazzo had to apply “a couple of modeling tricks (variable prun-
4 Experiments were performed on a Linux machine with an AMD-Ryzen 9 3900X

12-Core processor and 32 GB of RAM.

An MM Algorithm to Estimate Parameters in CTMCs 93

Fig. 2. Comparison of the performance of the estimation for timed and non-timed
observations on the tandem queueing network with different size of the queue.

ing and upper bounds) that allowed state space of the model [..] to be reduced
by several orders of magnitude. ” [36]. These kinds of modeling tricks are not
uncommon in formal verification, but they require the modeler to ensure that the
parameter values estimated for the original model are still valid in the approxi-
mated one. In this section, we showcase the use of our algorithm to simplify this
task. Specifically, we generate two training sets by simulating the SIR model in
Fig. 1 using Prism and, based on that, we re-estimate beta, gamma, and plock
on an approximated version of the model (cf. Fig. 3).

The first training set represents the spread of the disease without lockdown
(i.e., plock = 1), while the second one is obtained by fixing the value of plock
estimated in [36] (i.e., plock = 0.472081). In line with the data set used in [36],
both training sets consist of one (timed) observation reporting the number of
infected individuals for a period of 30 days.

The estimation of the parameters beta, gamma and plock is performed on
the model depicted in Fig. 3. As in [36], we use an approximated version of the
original SIR model (cf. Fig. 1) obtained by employing a few modeling tricks:

94 G. Bacci et al.

Fig. 3. Approximated SIR model.

Table 2. Parameter estimation on the approximated SIR model.

Parameter Expected Value Estimated Value Absolute Error

beta 0.122128 0.135541 0.013413

gamma 0.127283 0.128495 0.001212

plock 0.472081 0.437500 0.034581

variable pruning, set upper bounds on the state variable i, and re-scaling of
the variable r in the interval [0, nb r− 1]. These modeling tricks have the effect
to reduce the state space of the underlying CTMC, speeding-up in this way
parameter estimation and the following model analysis.

Weperformtheestimation in twosteps.First,weestimate thevaluesofbetaand
gammaonthefirsttrainingsetwithplock setto1(i.e.,withnorestrictions).Then,we
estimate thevalueofplockonthe secondtraining setwithbetaandgamma set to the
values estimated in the first step. Each step was repeated 10 times by randomly re-
sampling the initial values of each unknown parameter in the interval [0, 1]. Table 2
reports the average estimatedvalues andabsolute errors relative to eachparameter.
The running time of each estimation was on average 89.94 seconds5.

Notably, we were able to achieve accurate estimations of all the parameters
from training sets consisting of a single partially-observable execution of the
original SIR model. As observed in Sect. 5, this may be due to the fact that each
parameter occurs in many transitions.

This case study demonstrates that our estimation procedure can be effectively
used to simplify modeling pipelines that involve successive modifications of the
model and the re-estimation of its parameter values.

5 ExperimentswereperformedonaLinuxmachinewithanAMD-Ryzen93900X12-Core
processor and 32 GB of RAM.

An MM Algorithm to Estimate Parameters in CTMCs 95

7 Related Work

Literature on parameter estimation for CTMCs follows two approaches. The first
approach is based on Bayesian inference and assumes a probability distribution
over parameters which in turn produces an uncertain CTMC [5,20]. In this line
of work, Georgoulas et al. [19,20] proposed ProPPA, a stochastic process algebra
with inference capabilities. Using probabilistic inference, the ProPPA model is
combined with the observations to derive updated probability distributions over
rates. Uncertain pCTMCs require dedicated model checking techniques [5].

The second approach aims at estimating parameter values producing concrete
CTMCs via maximum likelihood estimation. In this line, Geisweiller proposed
EMPEPA [18], an expectation-maximization algorithm that estimates the rate
values inside a PEPA model. Wei et al. [43] learn the infinitesimal generator
of a continuous-time hidden Markov model by first employing the Baum-Welch
algorithm [38] to estimate the transition probability matrix of its (embedded)
hidden Markov model from a set of periodic observations.

A large body of literature studies parameter estimation for stochastic reaction
networks (SRN) (cf. [35,40] and references therein). According to Gillespie’s
theory of stochastic chemical kinetics, SRNs can be represented using CTMCs
with states in N

d. An SRN describes the dynamics of a population of d chemical
species by means of a number of chemical reaction rules. Notably, the SIR model
in Fig. 1 was encoded from an SRN. The parameter estimation problem for
SRNs focuses on estimating the rate values associated with each reaction rule.
Due to the nature of the models, estimation algorithms for SRNs aim at being
able to scale on the number of species as well as the size of the population.
In this respect, (i) Andreychenko et al. [2] employs numerical approximations
of the likelihood function (and its derivatives) w.r.t. reaction rate constants by
dynamically truncating the state space in an on-the-fly fashion, considering only
those states that significantly contribute to the likelihood in a given time interval,
while (ii) Bayer et al. [8] combines the Monte Carlo version of the expectation-
maximization algorithm [34] with the forward-reverse technique developed in [9]
to efficiently simulate SRN bridges conditional on the observed data. Compared
with our method, the estimation algorithms of [2,8] scale better in the number of
species and population size. The main limitation of the efficiency of our method
is the computation of the forward and backward functions, whose complexity
grows quadratically in the number of states. In contrast with our technique
both [2] and [8] assume to observe all the coordinates of the state (in [2] these
are additionally assumed to be subject to Gaussian noise). In our opinion, this
limits the applicability of their methods to scenarios where states are partially
observed. Such an example is the case study of Sect. 6 where the available data set
was only reporting the number of infected individuals (i.e., two components out
of three were not observable). Daigle et al. [27] developed an efficient version of
the Monte Carlo expectation-maximization technique which employs modified
cross-entropy methods to account for rare events. Notably, their technique is
executable also on data sets with missing species but, as for our algorithm, such
flexibility comes at the expense of efficiency. As pointed out in [8], the techniques

96 G. Bacci et al.

used in [27] have some analogies with those of [8], but its run-time performance
is comparably slower than that of [8]: the algorithm of [27] took 8.7 days for the
parameter estimation on an SRN describing an auto-regulatory gene network
with five species, while the method of [8] took 2 days6.

Sen et al. [41] presented a variant of Alergia [11] to learn a (transition-
labeled) CTMC from timed observations. In contrast with our work, [41] does
not perform parameter estimation over structured models, but learns an unstruc-
tured CTMC. Hence, [41] suits better for learning a single component CTMC
when no assumption can be made on the structure or the size of the model.

Another related line of research is parameter synthesis of Markov models [26].
In particular, [12,21] consider parametric CTMCs, but are generally restricted
to a few parameters. In contrast with our work, parameter synthesis revolves
around the problem of finding (some or all) parameter instantiations of the
model that satisfy a given logical specification.

8 Conclusion and Future Work

We presented a novel technique to estimate parameter values of CTMCs
expressed as Prism models from partially-observable executions. We demon-
strated, with a case study, that our solution is a concrete aid in applications
involving modeling and analysis, especially when the model under study requires
successive approximations that require re-estimation of the parameters. The
major strengths of our algorithm are (i) its interoperability with the model check-
ing tools Prismand Storm, and (ii) the fact that it accepts partially-observable
data sets where both state and dwell times can be missing; However, the gen-
erality of our approach comes at the expense of efficiency. The computations
of the forward and backward functions which are required to update the coeffi-
cients of the surrogate function (4) have a time and space complexity that grows
quadratically in the number of states of the pCTMC, thus limiting the number
of components that our implementation can currently handle. In future work,
we consider investigating how to speed up the computation of the forward and
backward functions either by integrating GPU-accelerated techniques from [37]
or by replacing their exact computation in favor of numerical approximations
obtained through Monte Carlo simulations in line with the idea employed in
Monte Carlo EM algorithm [34].

Notably, the algorithm presented in this paper was devised following simple
optimization principles borrowed from the MM optimization framework. We
suggest that similar techniques can be employed to other modeling languages
(e.g., Markov automata [16,17]) and metric-based approximate minimization [3,
7]. An interesting future direction of research consists in extending our techniques
to Markov decision processes by integrating the active learning strategies [4].

6 Details on the experiments can be found in the respective papers.

An MM Algorithm to Estimate Parameters in CTMCs 97

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999). https://doi.org/10.1023/A:1008739929481

2. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for
Markov models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22110-1 8

3. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the metric-based approxi-
mate minimization of Markov chains. In: Chatzigiannakis, I., Indyk, P., Kuhn, F.,
Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, 10–14 July 2017, Warsaw, Poland. LIPIcs, vol. 80, pp.
104:1–104:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://
doi.org/10.4230/LIPIcs.ICALP.2017.104

4. Bacci, G., Ingólfsdóttir, A., Larsen, K.G., Reynouard, R.: Active learning of markov
decision processes using Baum-Welch algorithm. In: Wani, M.A., Sethi, I.K., Shi,
W., Qu, G., Raicu, D.S., Jin, R. (eds.) 20th IEEE International Conference on
Machine Learning and Applications, ICMLA 2021, pp. 1203–1208. IEEE (2021).
https://doi.org/10.1109/ICMLA52953.2021.00195

5. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based
verification of CTMCs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) CAV
2022, Part II. LNCS, vol. 13372, pp. 26–47. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13188-2 2

6. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541
(2003). https://doi.org/10.1109/TSE.2003.1205180

7. Balle, B., Lacroce, C., Panangaden, P., Precup, D., Rabusseau, G.: Optimal
spectral-norm approximate minimization of weighted finite automata. In: Bansal,
N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2021, 12–16 July 2021, Glasgow, Scotland (Vir-
tual Conference). LIPIcs, vol. 198, pp. 118:1–118:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.118

8. Bayer, C., Moraes, A., Tempone, R., Vilanova, P.: An efficient forward-reverse
expectation-maximization algorithm for statistical inference in stochastic reac-
tion networks. Stoch. Anal. Appl. 34(2), 193–231 (2016). https://doi.org/10.1080/
07362994.2015.1116396

9. Bayer, C., Schoenmakers, J.: Simulation of forward-reverse stochastic represen-
tations for conditional diffusions. Ann. Appl. Probab. 24(5), 1994–2032 (2014).
https://doi.org/10.1214/13-AAP969

10. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018). https://doi.org/10.1016/j.jss.2018.05.013

11. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

98 G. Bacci et al.

12. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2016). https://doi.org/10.1007/s00236-016-0265-2

13. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009). https://
doi.org/10.1016/j.tcs.2009.02.037

14. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

15. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. 39(1), 1–38 (1977)

16. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 21–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15375-4 3

17. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, LICS 2010, 11–14 July 2010, Edinburgh, United Kingdom, pp. 342–351.
IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

18. Geisweiller, N.: Finding the most likely values inside a PEPA model according to
partially observable executions. Ph.D. thesis, LAAS (2006)

19. Georgoulas, A., Hillston, J., Milios, D., Sanguinetti, G.: Probabilistic program-
ming process algebra. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS,
vol. 8657, pp. 249–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10696-0 21

20. Georgoulas, A., Hillston, J., Sanguinetti, G.: Proppa: probabilistic programming
for stochastic dynamical systems. ACM Trans. Model. Comput. Simul. 28(1), 3:1–
3:23 (2018). https://doi.org/10.1145/3154392

21. Han, T., Katoen, J., Mereacre, A.: Approximate parameter synthesis for probabilis-
tic time-bounded reachability. In: Proceedings of the 29th IEEE Real-Time Sys-
tems Symposium, RTSS 2008, Barcelona, Spain, 30 November–3 December 2008,
pp. 173–182. IEEE Computer Society (2008). https://doi.org/10.1109/RTSS.2008.
19

22. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

23. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains. In: Plateau, B.,
Stewart, W., Silva, M. (eds.) Proceedings of 3rd International Workshop on Numer-
ical Solution of Markov Chains (NSMC 1999), pp. 188–207. Prensas Universitarias
de Zaragoza (1999)

24. Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis,
University of Edinburgh, UK (1994). http://hdl.handle.net/1842/15027

25. Jamshidian, M., Jennrich, R.I.: Acceleration of the EM algorithm by using quasi-
newton methods. J. Roy. Stat. Soc. Ser. B (Methodol.) 59(3), 569–587 (1997).
http://www.jstor.org/stable/2346010

An MM Algorithm to Estimate Parameters in CTMCs 99

26. Jansen, N., Junges, S., Katoen, J.: Parameter synthesis in Markov models: a gentle
survey. In: Raskin, J., Chatterjee, K., Doyen, L., Majumdar, R. (eds.) Principles of
Systems Design. LNCS, vol. 13660, pp. 407–437. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22337-2 20

27. Daigle, B.J., Roh, M.K., Petzold, L.R., Niemi, J.: Accelerated maximum likelihood
parameter estimation for stochastic biochemical systems. BMC Bioinform. 13, 68
(2012). https://doi.org/10.1186/1471-2105-13-68

28. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

29. Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking
in systems biology. SIGMETRICS Perform. Evaluation Rev. 35(4), 14–21 (2008).
https://doi.org/10.1145/1364644.1364651

30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

31. Lange, K.: Optimization, 2nd edn. Springer, New York (2013). https://doi.org/10.
1007/978-1-4614-5838-8

32. Lange, K.: MM Optimization Algorithms. SIAM (2016). http://bookstore.siam.
org/ot147/

33. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System
Performance - Computer System Analysis Using Queueing Network Models. Pren-
tice Hall, Hoboken (1984)

34. Levine, R.A., Casella, G.: Implementations of the Monte Carlo EM algorithm.
J. Comput. Graph. Stat. 10(3), 422–439 (2001). http://www.jstor.org/stable/
1391097

35. Loskot, P., Atitey, K., Mihaylova, L.: Comprehensive review of models and methods
for inferences in bio-chemical reaction networks. Front. Genet. 10 (2019). https://
doi.org/10.3389/fgene.2019.00549

36. Milazzo, P.: Analysis of COVID-19 data with PRISM: parameter estimation and
SIR modelling. In: Bowles, J., Broccia, G., Nanni, M. (eds.) DataMod 2020. LNCS,
vol. 12611, pp. 123–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-70650-0 8

37. Ondel, L., Lam-Yee-Mui, L.M., Kocour, M., Corro, C.F., Burget, L.: GPU-
accelerated forward-backward algorithm with application to lattice-free mmi.
In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 8417–8421 (2022). https://doi.org/10.1109/
ICASSP43922.2022.9746824

38. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.
18626

39. Reynouard, R.: Jajapy (v 0.10) (2022). https://github.com/Rapfff/jajapy
40. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for

stochastic biochemical kinetics-a tutorial review. J. Phys. A Math. Theor. 50(9),
093001 (2017). https://doi.org/10.1088/1751-8121/aa54d9

41. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time Markov chains from
sample executions. In: 1st International Conference on Quantitative Evaluation of
Systems (QEST 2004), pp. 146–155. IEEE Computer Society (2004). https://doi.
org/10.1109/QEST.2004.1348029

100 G. Bacci et al.

42. Terwijn, S.A.: On the learnability of hidden Markov models. In: Adriaans, P.,
Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 261–
268. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45790-9 21

43. Wei, W., Wang, B., Towsley, D.F.: Continuous-time hidden Markov models for
network performance evaluation. Perform. Evaluation 49(1/4), 129–146 (2002)

44. Zhou, H., Alexander, D.H., Lange, K.: A quasi-Newton acceleration for high-
dimensional optimization algorithms. Stat. Comput. 21(2), 261–273 (2011).
https://doi.org/10.1007/s11222-009-9166-3

