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Abstract. We present Jajapy, a Python library that implements a
number of methods to aid the modelling process of Markov models
from a set of partially-observable executions of the system. Currently,
Jajapy supports different types of Markov models such as discrete and
continuous-time Markov chains, as well as Markov decision processes.

Jajapy can be used both to learn the model from scratch or to estimate
parameter values of a given model so that it fits the observed data the best.
To this end, the tool offers different learning techniques, either based on
expectation-maximization or state-merging methods, each adapted to dif-
ferent types of Markov models. One key feature of Jajapy consists in its
compatibility with the model checkers Storm and Prism.

The paper briefly presents Jajapy’s functionalities and reports an
empirical evaluation of their performance and accuracy. We conclude
with an experimental comparison of Jajapy against AALpy, which
is the current state-of-the-art Python library for learning automata.
Jajapy and AALpy complement each other, and the choice of the library
should be determined by the specific context in which it will be used.

Keywords: Machine Learning · Expectation-Maximization · Model
Checking · Markov models · Python

1 Introduction

Markov models are a very popular formalism. Discrete-time Markov chains
(MCs) and continuous-time Markov chains (CTMCs) have wide applications
in performance and dependability analysis, whereas Markov decision processes
(MDPs) are key models for stochastic decision-making and planning which find
numerous applications in the design and analysis of cyber-physical systems.

Prism [1] and Storm [2] are two widely-used model checking tools that pro-
vide an efficient and reliable way to verify the correctness of probabilistic sys-
tems. They both accept models written in the Prism language, an expressive
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state-based language based on [3]. Prism is a powerful tool for modeling and
analysing MCs, MDPs, and probabilistic timed automata. It has a user-friendly
interface and supports a variety of analysis techniques, including model check-
ing, parameter synthesis, and probabilistic model checking. Storm, on the other
hand, is a highly scalable and efficient tool for analysing probabilistic systems with
continuous-time and hybrid dynamics [4]. It supports both explicit and symbolic
model representation, and provides state-of-the-art algorithms for model check-
ing and synthesis tasks. Both tools have been extensively used in academia and
industry to analyse a wide range of systems, including communication protocols,
cyber-physical systems, and biological systems.

The standard assumption of model checking tools is that the model is known
precisely. For many application domains, this assumption is too strong. Often
the model is not available, or at best is partially known. In such cases, the model
is typically estimated empirically from a set of partially-observable executions
(a.k.a. traces). Depending on the system under consideration, traces may be
collected offline in the form of time series or (possibly continuous) streams of
system logs, or the modeller can actively query the system and stir the explo-
ration of its dynamics. In the latter situation, interaction with the system may
be limited due to safety critical concerns, or simply to comply with the budget
allocated for the task.

To effectively exploit the characteristics of different learning scenarios it is
convenient to have a single library that provides a variety of learning algorithms,
which can handle different learning scenarios and model types seamlessly, while
integrating well with the model-and-verification workflow of Prism and Storm.

In this paper, we present Jajapy [5], a free open-source Python library that
offers a number of techniques to learn Markov models from traces and is inter-
operable with Prism and Storm. Jajapy implements the following machine-
learning techniques:

(i) Alergia [6,7] and IOAlergia [8,9], passive learning procedures that learn
respectively MCs and (deterministic) MDPs from a set of traces by succes-
sively merging compatible states;

(ii) a number of adaptations of the Baum-Welch algorithm [10] to learn MCs,
MDPs [11,12], and CTMCs [13] by estimating their transition probabilities
given a set of traces and the size of the resulting model;

(iii) active learning strategies to enhance the quality of the MDPs learned using
the Baum-Welch algorithm [11,12] when the user has the possibility to
interact with the system;

(iv) MM algorithms [13] for estimating parameter value in parametric CTMCs
(pCTMCs) from a set of (possibly non-timed) traces.

Jajapy implements also metrics to independently evaluate the output model
against a test set. This is particularly useful to measure the degree of generalisa-
tion that the output model offers on top of the training set and assess whether
the output model overfits the training data or not. Interoperability with Prism
and Storm is achieved by supporting import and export functions for Prism
models as well as Stormpy sparse models.
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Jajapy’s source code follows a modular architecture design and can therefore
be extended to other modelling formalisms and learning algorithms. Jajapy’s
documentation can be found on Read the Docs [14] that is complemented with
a short video-introduction available on Zenodo [15].

Related Work. AALpy [16] is a recent Python library that can learn both non-
stochastic and stochastic models. In particular, AALpy can learn MDPs using
L∗
MDP [17], an extension of Angluin’s L∗ algorithm [18], and MCs using Alergia

[6,7]. In Sect. 5.3, we compare Jajapy and AALpy performance.
Other automata learning frameworks have been developed as well. For exam-

ple, Learnlib [19] and libalf [20], which learn non-stochastic models. In contrast
with these tools, as of now, Jajapy primary focus is on learning Markov models.

In this paper, we present the different learning methods implemented in
Jajapy and AALpy. However, other methods also exist, such as the MDI algo-
rithm [21,22], two state-merging based approaches, or the Bayesian method using
Gibbs sampling [23] proposed by Neal in [24].

MDPs are extensively used in reinforcement learning as in [25–27], and in
robust reinforcement learning [28] as in [29–31]. In this context, the objective is
to learn an optimal policy that maximises long-term rewards in a given environ-
ment.

A related line of research is model synthesis. Counterexample-guided induc-
tive synthesis (CEGIS) [32] study the problem of completing a given program
sketch (i.e., a probabilistic program with holes) so that it satisfies a given set
of quantitative specifications. Another approach is parameter synthesis [33,34],
where the objective is to find some (or all) instances of a given parametric
Markov model satisfying a logic formula. In [35], the authors combine parameter
synthesis and parametric inference techniques to synthesize feasible parameter
valuations and quantify the confidence that the corresponding model satisfies a
given property of interest.

Paper Outline. We start with a quick introduction to Jajapy’s functionalities
in Sect. 2, then we explain Jajapy’s features from a theoretical perspective in
Sect. 3. In Sect. 4, we present some technical aspects of Jajapy, and in Sect. 5
we evaluate our tool and compare it to AALpy.

2 Jajapy in a Nutshell

Jajapy offers learning methods to construct an accurate model of a system
under learning (SUL) from a set of traces and export it to a format that can be
directly used in Storm and Prism for analysis (Fig. 1).

In the following, we call training set (resp. test set) the collection of traces
used to learn the SUL model (resp. to evaluate the learning output model).
Depending on the nature of the training set, Jajapy learns different types of
models: (i) MCs are learned from sequences of labels (i.e., sequences of atomic
propositions), (ii) CTMCs and pCTMCs are learned from times series of labels,
and (iii) MDPs are learned from alternating sequences of actions and labels.
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Fig. 1. A complete modeling and verification workflow using Jajapy . The phases
where Jajapy is employed are highlighted in green, whereas the phase in blue is
assumed to be performed with Storm or Prism (Color figure online).

A trace denotes, depending on the context, a sequence of labels, a time series
of labels, and an alternating sequence of actions and labels. The length of a trace
is always the number of labels it contains.

The first and main learning algorithm offered by Jajapy is the Baum-Welch
(BW) algorithm. It takes as input a training set and an initial hypothesis, i.e.
a Markov model. During the BW execution, the transition probabilities of this
initial hypothesis will be updated but no state will be added/removed from it.
Therefore, the number of states in the resulting model will be equal to the num-
ber of states in the initial hypothesis. By default Jajapy generates a random
initial hypothesis (given as input the number of states) but the user can also
provide one explicitly. This enables the user to exploit his knowledge of the SUL
to enhance the learning process. Such an initial hypothesis can be a Stormpy
sparse model, a model saved in a Prism file or a Jajapy model. Given a train-
ing set and an initial hypothesis, the BW algorithm constructs an approximate
representation of the SUL, called output model (Fig. 2).

Fig. 2. Simple execution of Jajapy BW to learn an MC with 10 states.

As an alternative to the BW algorithm, Jajapy offers implementations of
Alergia and IOAlergia to learn respectively MCs and MDPs. These algorithms
take as input the training set and a confidence parameter.

Once Jajapy has produced the output model, the user can use Stormpy to
verify the model against some properties of interest supported by Storm. The
output model can also be exported to a Prism model and analysed with the
Prism model checker.
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3 Learning Probabilistic Models

In this section, we briefly describe the key characteristics of the learning methods
for Markov models currently available in Jajapy and AALpy.

These methods belong to two categories, active and passive. Active learning
methods learn from interactions with the SUL, while passive methods learn from
the training set only. Active learning methods are usually more efficient (in terms
of data), but can be used only if it is possible to interact with the SUL.

Some learning methods allow the user to decide the size (i.e. the number of
states) of the output model, preventing the algorithm from generating models
too large to be efficiently analysed. The downside of such a feature consists in
the fact that, if the number of states requested is too large (resp. small), the
output model may overfit (resp. underfit) the training set.

A Markov model is deterministic if, for any state s and label �, there exists
at most one transition leaving s to a state labelled with �. Some of the learning
methods described below assume the SUL to be deterministic. When such meth-
ods are exercised with a SUL that is non-deterministic, they are not guaranteed
to converge to the true model, instead, they will return a deterministic model
that approximates the SUL. Typically, the approximated model is larger than
the SUL.

Expectation Maximisation Approach. The Baum-Welch (BW) algorithm is an
iterative maximum likelihood estimation method to estimate the parameters of
Markov models [36]. This technique is an application of the Expectation Max-
imisation algorithm. Originally designed for Hidden Markov Models [10], it has
been adapted to MCs, CTMCs and MDPs [12,13].

Given a set of traces O (the training set) and an initial hypothesis H0, the BW
algorithm iteratively updates H0 such that the likelihood that the hypothesis
generates O has increased with respect to the previous step. The algorithm stops
when the likelihood difference between two successive hypotheses is lower than
a fixed threshold ε. In Jajapy, the user can also set an upper bound on the
number of BW iterations. BW converges to a local optimum [37].

The BW algorithm is a passive learning approach, it allows the user to decide
the size of the output model, and can learn non-deterministic models.

Active Learning with Sampling Strategy. Jajapy implements an active learning
extension of the BW algorithm for MDPs [11,12]. This method uses a sampling
strategy to generate new training samples that are most informative for the
current model hypothesis. With this method, the user decides the size of the
output model. This algorithm is able to learn non-deterministic models.

Currently, Jajapy only supports the sampling strategy described in [11,12].

State-merging Approach. Both Jajapy and AALpy provide an implementation
of the Alergia algorithm [6,7] to learn MCs and its extension IOAlergia [9] to
learn MDPs. These algorithms use a state-merging approach. Starting from a
maximal tree-shaped probabilistic automaton representing the training set, they
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iteratively merge states that are “similar enough” according to an Hoeffding test
[38]. The accuracy of the Hoeffding test is provided as input. These algorithms
are passive, they do not allow the user to choose the number of states in the
output model, and they assume the SUL to be deterministic.

Active Learning with Membership and Equivalence Queries. AALpy provides
an implementation of L∗

MDP [17], an extension of Angluin’s L∗ algorithm [18] to
learn MDPs. As for Alergia, this method assumes the SUL to be deterministic,
and the size of the output model cannot be chosen in advance.

Table 1 summarises the key characteristics of the learning methods discussed
above. The 5th column indicates whether or not the user can choose the num-
ber of states in the output model, and the 6th column indicates whether the
algorithm is able to generate non-deterministic models or not.

Table 1. Key characteristics of the selected learning algorithms for Markov models.

Algorithm Model Reference Active # states Non-det. Jajapy AALpy

BW-MC MC [11,12] ✗ ✓ ✓ ✓ ✗

BW-CTMC CTMC [13] ✗ ✓ ✓ ✓ ✗

MM-pCTMC pCTMC [13] ✗ ✓ ✓ ✓ ✗

BW-MDP MDP [11,12] ✗ ✓ ✓ ✓ ✗

Active-BW MDP [11,12] ✓ ✓ ✓ ✓ ✗

Alergia MC [6,7] ✗ ✗ ✗ ✓ ✓

IOAlergia MDP [8,9] ✗ ✗ ✗ ✓ ✓

L∗
MDP MDP [17] ✓ ✗ ✗ ✗ ✓

4 Architecture and Technical Aspects

In this section, we describe some internal aspects of Jajapy.

Jajapy models. In Jajapy, each kind of model is represented by a class, which
inherits from an abstract class Model. This makes Jajapy modular and easy to
extend to other model formalisms.

The abstract class Model implements the methods to run the model, gener-
ate traces and compute the loglikelihood1 of a set of traces under the model.
Currently, all models in Jajapy use an explicit state-space representation.

Every Jajapy model has an attribute matrix which contains the transition
probabilities. This matrix is a Numpy ndarray [39] of floats. Each Jajapy model
has also an attribute labelling containing the label associated to each state.
This attribute is a Python list whose length equals to the number of states of
the model. Finally, Jajapy uses Sympy [40] to represent symbolic expressions
used for transition rate expressions in pCTMCs.
1 The logarithm of the likelihood function.
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Learning with BW. BW executions are handled by the BW class.
The BW.fit method starts by determining which model formalism should be

used according to the given initial model (if provided) and the training set.
Then, it selects the appropriate update procedure and runs the BW algo-

rithm.
An execution of the BW algorithm resolves into a sequence of matrix opera-

tions that are handled by Numpy. In addition, if Jajapy is executed on a Linux
machine, it supports multithreading to speed up the BW algorithm: at each BW
iteration, Jajapy executes one thread for each unique trace in the training set.

Output Models. The output format of any Jajapy learning methods can be cho-
sen among the following: Stormpy sparse model or Jajapy model. The output
model can also be exported to a Prism file by setting the output file prism
parameter of the BW.fit method.

Representing Training Sets and Test Sets. Jajapy uses its own Set class to
represent training and test sets. This class has two attributes: (i) sequences,
the set of all unique traces in the training set, and (ii) times, which contains, for
each trace in sequences, the number of times this trace has been observed. This
reduces significantly the number of computations during the learning process
when traces appear several times in the training set. Nevertheless, the training
set can be given as a Python list (or Numpy ndarray) to the BW.fit method.

In Jajapy, training sets and test sets are not represented through a prefix
tree (as is normal in other libraries) since this is only advantageous when Jajapy
is used in single thread mode. The training sets/test sets are sorted by Jajapy
only in this case.

5 Experimental Evaluation and Comparison

In this section, we first test Jajapy validity. Secondly, we empirically evaluate
how the different learning methods scale with the size of the output model and
the training set. Finally, we compare it with AALpy.

All the experiments were run on a Linux machine with an AMD Ryzen 9
3900X 12-Core processor and 32 GB of memory.

In the experiments, we use the loglikelihood distance (abbreviated as ll. dis-
tance) as a metric to compare two models: given two models M and M′ and
n traces O, the loglikelihood distance w.r.t. O is 1

n | ln L(M,O) − ln L(M′,O)|,
where L(M,O) denotes the likelihood of O under M.

5.1 JAJAPY validation testing

We test Jajapy validity as follows: (i) we translate a Stormpy model M rep-
resenting the Yao-Knuth’s die [41] to a Jajapy one; (ii) we use it to generate
a training set of 10,000 traces of length 10: 10 being big enough to reach the
final state with a decent probability and 10,000 being small enough to learn the
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model in few seconds, but sufficiently big to learn a correct approximation of the
SUL; (iii) we learn, using Jajapy BW and Alergia implementations, two new
Stormpy models M′ and M′′, and finally (iv) M′,M′′ are compared both w.r.t.
their outcomes on some relevant model checking queries and their loglikelihood
distance on a test set relative to the true model M.

The first three queries correspond to the probability that the die roll gives
us 1, 2 or 3. The next three queries indicate the probability that the die gives us
4, 5 or 6 without ever going through the same state (except the final one) more
than once. Finally the last query corresponds to the probability that 10 throws
of the coin are enough to simulate the roll of the die.

Fig. 3. The Yao-Knuth’s die from [41]

We run these experiments on a Markov chain modelling the Yao-Knuth’s
die represented in Fig. 3 once with p = 0.5 (i.e. with a unbiased coin) and once
with p = 0.9. Table 2 and 3 show that Jajapy learned a valid representation of
the source model regardless of the algorithm used. When the coin is unbiased,
Alergia learns a bigger model than BW (23 states against 14) which is better in
terms of loglikelihood distance but worst for the model checking queries. This
is explained by the fact that, in this case, Alergia is not able to merge a large
number of states and, therefore, generates a model close to a PTA, which is
efficient in terms of ll distance (especially when the sequences in the test set
are the same length as those in the training set). When the coin is biased, some
possible traces do not appear or appear very little in the training set. Therefore,
the training set being composed of much more similar traces, the initial PTA
is much smaller as well as the model generated by Alergia. On the other hand,
the likelihood of the sequences present in the test set and not in the training set
can be fairly different between the model generated by Alergia and the SUL. In
other words, for the same training set, a model generated by Alergia will often
be less general than one generated by BW, because Alergia is more sensitive to
overfitting.
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Table 2. Results for an unbiased Yao-
Knuth’s die (p = 0.5).

true BW Alergia

# states 14 14 23

P(F (1)) 0.167 0.168 0.168

P(F (2)) 0.167 0.170 0.169

P(F (3)) 0.167 0.163 0.163

P(F≤4(4)) 0.125 0.130 0.143

P(F≤4(5)) 0.125 0.124 0.136

P(F≤4(6)) 0.125 0.107 0.129

P(F≤10(f)) 0.996 0.979 0.973

ll. distance 0.0 1.700 1.616

learning time (s) – 1.039 0.003

Table 3. Results for a biased Yao-
Knuth’s die (p = 0.9).

true BW Alergia

# states 14 14 12

P(F (1)) 0.801 0.797 0.797

P(F (2)) 0.089 0.092 0.092

P(F (3)) 0.010 0.008 0.008

P(F≤4(4)) 0.081 0.088 0.076

P(F≤4(5)) 0.009 0.010 0.009

P(F≤4(6)) 0.001 0.002 0.002

P(F≤10(f)) 1.0 0.999 0.992

ll. distance 0.0 0.511 1.569

learning time (s) – 1.060 0.001

5.2 Experimental Evaluation of the Scalability

Scalability Evaluation for MCs, CTMCs and MDPs. To evaluate the
scalability of our software, we report the running time and the memory footprint
required to learn models with an increasing number of states.

We use Jajapy to learn randomly generated transition-labeled MCs and
CTMCs ranging from 10 to 200 states, corresponding to models with up to 100
to 40,000 parameters (the number of parameters is at most s2, where s is the
number of states). We perform the same experiment for MDPs with 5 to 100
states and 4 actions, thus having at most 100 to 40,000 parameters (here the
number of parameters is at most s2 ·a, where s and a are respectively the number
of states and actions). We employ training sets containing 1,000 traces of length
10. These two values offer a good compromise between accuracy and running
time. We set the size of the initial hypothesis equal to that of the SUL. The
results are shown in Fig. 4.

The running time for all type of SULs increases exponentially, but at a larger
rate for CTMCs: while one BW iteration for an MDP with 200 states and an MC
with 400 states took around two minutes in this setting, one BW iteration for a
CTMC with 200 states took 97 min. This is due to the computational difficulty of
calculating rates of exponential distributions when learning CTMCs parameters.
Memory usage also increases exponentially for all types of Markov models. These
exponential growths were expected, since the number of parameters to estimate
increases exponentially with the number of states.
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Fig. 4. Jajapy running time, memory usage and loglikelihood distance w.r.t. the num-
ber of parameters of the hypothesis.

Finally, as the complexity of the model increases, the loglikelihood distance
grows. This issue is usually mitigated by increasing the length and number of
traces in the training set.

Scalability Evaluation for pCTMCs. To evaluate the scalability of our soft-
ware on pCTMCs, we use the tandem queueing network model from [42] (cf.
Fig. 5) as a benchmark for our evaluation.

The experiments have been designed according to the following setup. We
assume that the state of serverC is fully observable —i.e., its state variables
sc and ph are– as well as the size c of the queue and the value of lambda. In
contrast, we assume that the state of serverM is not observable.

Each experiment consists in estimating the value of the parameters mu1a,
mu1b, mu2, and kappa from a training set consisting of 100 traces of length 30,
generated by simulating the Prism model depicted in Fig. 5. When the value
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of c is large, it is necessary to have lengthy traces to cover the state space of the
SUL. As a result, traces with a length of 30 are utilised. However, in order to
restrict the amount of time taken for execution, only 100 traces are employed.
We perform this experiment both using timed and non-timed observations, by
increasing the size c of the queue until the running time of the estimation exceeds
a time-out set to 1 hour. We repeat each experiment 10 times by randomly re-
sampling the initial values of each unknown parameter xi in the interval [0.1, 5.0].
We annotate the running time as well as the relative error δi for each parameter
xi, calculated according to the formula δi = |ei − ri|/|ri|, where ei and ri are
respectively the estimated value and the real value of xi.

Figure 6 (bottom) depicts the graph of the average running time relative to
the model size together with error bars. We observe that the running time is
quadratic in the number of states (equivalently, linear in the size the number
of states plus the number of non-zero transitions of the model) both for timed
and non-timed observations. However, for non-timed observations, the variance
of the measured running times tends to grow with the size of the model. In
this respect, we observed that large models required more iterations than small
models to converge. Nevertheless, all experiments required at most 20 iterations.

Figure 6 (top) details the average L1-norm (resp. L∞-norm) of the vector
δ = (δi), calculated as ||δ||1 =

∑
i |δi| (resp. ||δ||∞ = maxi |δi|). As one may

expect, the variance of the measured relative errors is larger in the experiments
performed with non-timed observations, and the quality of the estimation is
better when employing timed observations. Notably, for timed observations, the
quality of the estimation remained stable despite the size of the model increased
relative to the size of the training set. This may be explained by the fact that
the parameters occur in many transitions.

Fig. 5. Prism model for the tandem queueing network from [42].
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5.3 Comparison with AALPY

AALpy is an active automata-learning Python library that implements several
learning algorithms to learn various families of automata. Since Jajapy learns
stochastic models only, our comparison will focus on these models. However,
AALpy is also able to Deterministic Finite Automata and Mealy Machines.

AALpy implements L∗
MDP , an extension of Angluin’s L∗ algorithm [17,18]

to learn MDPs, and the Alergia algorithm to learn MCs.
Table 1 summarises the learning algorithms available in Jajapy and AALpy

for stochastic models. On the one hand, Jajapy can learn non-deterministic
models and CTMCs, which AALpy cannot; on the other hand, AALpy can learn
non-stochastic models, which Jajapy cannot. In contrast to AALpy, Jajapy’s
output models are immediately usable in Stormpy.

We compare AALpy L∗ and Jajapy BW algorithms on learning two vari-
ants of the grid-worlds presented in [12] and illustrated in Fig. 7. A robot is
moving in the grid, starting from the top-left corner. Its objective is to reach the

Fig. 6. Comparison of the performance of the estimation for timed and non-timed
observations on the tandem queueing network with different size of the queue.
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bottom-right corner. The actions are the four directions —north, east, south,
and west— and the observed labels are the different terrains. Depending on the
target terrain, the robot may make errors in movement, e.g. move southwest
instead of south. By construction, the 3× 3 world is a deterministic MDP, and
the 4× 4 world is a non-deterministic one.

We run, for both models, AALpy for 200 L∗ learning iterations and Jajapy
for 200 BW iterations. We emphasize the fact that the two tools are using two
different learning algorithms that are, in the author’s opinion, complementary.

Table 4 and 5 show the results respectively for the 3× 3 grid and the 4× 4
grid. In both cases, the loglikelihood distance is computed for a test set contain-
ing 10,000 traces of length 20. First, we observe that, when the SUL is determinis-
tic, the two output models are similar. Actually, Jajapy output is slightly closer
to the SUL, but AALpy ran faster. However, when the SUL is non-deterministic,
the difference between the two output models is more important. AALpy ran
faster but produced a model with almost 8 times more states. Indeed L∗

MDP , by
property, learned a deterministic approximation of the SUL, that is much bigger
than the SUL itself. In terms of loglikelihood distance, AALpy output model
is slightly less accurate than Jajapy one. Finally, we notice that Jajapy uses
far less information than AALpy, and does not require any interaction with the
SUL (using a passive learning approach), in contrast to AALpy.

The fact that AALpy runs faster than Jajapy can be explained by the
complexity of the two algorithms involved here, namely L∗

MDP and the BW
algorithm. The BW algorithm is known to be costly in terms of time and memory
complexity. Khreich et al. [43] point out several cases where, due to its cost, the
BW algorithm could not be applied. In the same paper, they present a variant of
it, requiring fewer memory resources while achieving the same results. However,
Bartolucci et al. [44] show that this variant suffers from numerical problems.

In general, when learning MDPs, if it is impossible to interact with the SUL,
we recommend Jajapy BW. Otherwise, we recommend using AALpy L∗

MDP ,
especially when the SUL is known to be deterministic.

Table 4. Results for the 3× 3 deterministic grid-world model.

true AALpy Jajapy BW

overall # of labels – 74, 285 74, 285

# of traces - 15, 218 3, 714

|S| (# of states) 17 18 17

loglikelihood distance 0.0 0.7305 0.3352

Pmax[F
≤4(goal)] 0.336 0.322 0.347

Pmax[¬G U≤4(goal)] 0.072 0.074 0.074

Running time – 1.15 s 290.8 s
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Fig. 7. Grid worlds models. (Left) a 3× 3 deterministic model; (Right) a 4× 4 non-
deterministic model.

Table 5. Results for the 4× 4 non-deterministic grid-world model.

true AALpy Jajapy BW

overall # of labels – 16,232,244 200,000

# of traces – 2, 174, 167 10,000

|S| (# of states) 28 207 28

loglikelihood distance 0.0 0.4963 0.4680

Pmax[F
≤7(goal)] 0.687 0.680 0.692

Pmax[F
≤12(goal)] 0.996 0.995 0.996

Pmax[¬(C | W) U≤7(goal)] 0.520 0.514 0.504

Running time – 290.65 s 15,303.83 s

6 Conclusions and Future Work

We presented Jajapy, a Python learning library for Markov models, and dis-
cussed its key features, implementation, usage, and performance evaluation.
Jajapy is designed to be interoperable with Prism and Storm, and offers
a variety of learning methods, both active and passive. We compared Jajapy
and AALpy and argued that the two libraries complement each other, thus the
choice of which library to use depends on the learning scenario.

As a future work, we consider implementing GPU-accelerated methods to
speed-up the forward-backward computations required at each iteration of the
BW algorithms borrowing ideas from [45,46].

Data Availability. An artifact allowing one to reproduce the experiments from
this paper has been submitted to the QEST 2023 artifact evaluation.
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